

THE PERIODICITY OF NIM-SEQUENCES IN TWO-ELEMENT SUBTRACTION GAMES 1

Bret Benesh

Department of Mathematics, The College of St. Benedict and St. John's University, St. Joseph, Minnesota bbenesh@csbsju.edu

Jamylle Carter

Department of Mathematics, Diablo Valley College, Pleasant Hill, California jcarter@dvc.edu

Doug Crabill Department of Statistics, Purdue University, West Lafayette, Indiana dgc@purdue.edu

Deidra Coleman

Department of Mathematics, Wofford College, Spartanburg, South Carolina colemanda@wofford.edu

Jack Good

Department of Computer Science, Purdue University, West Lafayette, Indiana good10@purdue.edu

Michael Smith

Dept. of Math and Dept. of Statistics, Purdue University, West Lafayette, Indiana smit2589@purdue.edu

Jennifer Travis

Department of Mathematics, Lone Star College-North Harris, Houston, Texas Jennifer.Travis@lonestar.edu

Mark Daniel Ward

Department of Statistics, Purdue University, West Lafayette, Indiana mdw@purdue.edu

Received: 7/23/19, Accepted: 5/21/20, Published: 5/26/20

Abstract

Consider a subtraction game with a two-element subtraction set $\{x, y\}$. We offer a new proof of an old result that states that the periodicity of the nim-values for the game is either 2x or x + y. Moreover, we completely classify the behavior of the game by describing necessary and sufficient conditions for obtaining a given nim-value at a position.

 $^{^1 \}mathrm{In}$ memory of Elwyn Berlekamp, John Conway, and Richard Guy

1. Introduction

Consider the following two-player game. The game begins with a pile of stones between the two players. The players take turns removing stones from the pile, under the restriction that the number of stones one removes in a turn is in a predetermined set S of natural numbers called a *subtraction set*. The player who takes the last stone wins. Such games are called subtraction games. Subtraction games are widely studied (e.g. [1, 2, 3, 4]) and are related to the game of Nim. In particular, the famous Sprague–Grundy Theorem [2, p. 56] implies that any subtraction game is equivalent to a game of Nim having only a single pile; the size of such a pile is said to be the *nim-value*, or Grundy number, of a subtraction game.

Given a subtraction set, we can build a so-called *nim-sequence* of nim-values $\mathcal{G}(0), \mathcal{G}(1), \ldots$, where the nim-value of a game with m stones is $\mathcal{G}(m)$. Problem **A1(1)** of "Unsolved Problems in Combinatorial Games" [5] asks to analyze the nim-sequences of subtraction games, and particularly asks about the periodicity of the nim-sequences.

In this paper, we focus on the periodicity of a game with subtraction set $\{x, y\}$ where x < y. This question has previously been answered in [1, p. 97] and [4, pp. 529–530] via the following theorem, where the notation $(a_1a_2...a_n)^k$ denotes a repetition of $a_1a_2...a_n$ a total of k times, and $(a_1a_2...a_n)$ denotes $(a_1a_2...a_n)^{\infty}$.

Theorem 1 ([1, 4]). Let $S = \{x, y\}$ with x < y. Then the nim-sequence for this subtraction game is

- $(0^x 1^x)$ if y = (2m+1)x for some integer m;
- $((0^x 1^x)^m 0^r 2^{x-r} 1^r)$ if y = 2xm + r for some integers m and r with $0 \le r < x$;
- $((0^x 1^x)^m 2^{x+r})$ if y = 2xm + r for some integers m and r with -x < r < 0.

This paper offers a new proof of this result by using a result from Ferguson [2, p. 86] with two new results.

Theorem 2. ([2, Ferguson's Pairing Property]) Let $S = \{s_1, s_2, s_3, \ldots, s_k\}$ with $s_1 < s_i$ for all i > 1. Then $\mathcal{G}(n) = 1$ if and only if $\mathcal{G}(n - s_1) = 0$.

Theorem 3. Let $S = \{x, y\}$ with x < y. Then $\mathcal{G}(n) = 2$ if and only if both

- 1. G(n x) = 1 and
- 2. G(n-y) = 0.

Theorem 4. Let $S = \{x, y\}$ with x < y. If $n \ge y$, then $\mathcal{G}(n) = 0$ if and only if $\mathcal{G}(n-y) = 1$.

It is not difficult to observe that the nim-value of this subtraction game must be in $\{0, 1, 2\}$, so these three theorems give a complete characterization of this type of subtraction game.

Note that there was no proof of Theorem 1 in [4]. Additionally, the proof of Theorem 1 in [1] uses a method that does not give the same detailed information about the structure of this particular subtraction game. Thus, the new proof of Theorem 1 from Theorems 2, 3, and 4 gives additional insight into the behavior of this game.

While the results originally done in [1, p. 97] and [4, pp. 529–530] completely classify the periodicity of the nim-values of the game for a subtraction set of size 2, this work has not yet been done for a subtraction set of size 3.

2. Preliminaries

We will denote $\{0, 1, 2, 3, ...\}$ by N and consider the game described in the introduction. We define the following.

Definition 1. For a given set $A = \{x_1, \ldots, x_m\} \subseteq \mathbb{N}$, the minimum excluded value of A is the smallest non-negative integer x such that $x \notin A$. We denote the minimum excluded value of A as mex(A).

Definition 2. For a given subtraction set $S = \{s_1, \ldots, s_k\}$, the *nim-value* of a non-negative integer n is defined to be $\max\{\mathcal{G}(n-s) \mid s \in S, n-s \ge 0\}$. We will denote the nim-value of n as $\mathcal{G}(n)$.

Note that if $n < \min S$, then $\mathcal{G}(n) = \max \emptyset = 0$. We now state and prove an elementary result alluded to in the Introduction.

Proposition 1. Let $S = \{s_1, \ldots, s_k\}$. Then $\mathcal{G}(n) \leq k$ for all n.

Proof. Fix $n \in \mathbb{N}$. Then $\mathcal{G}(n) = \max T$, where T is defined to be $\{\mathcal{G}(n-s) \mid s \in S, n-s \geq 0\}$. From the way T is defined, it is clear that $|T| \leq |S| = k$, so $\mathcal{G}(n)$ is the smallest number missing from a set of at most k elements. Thus, one of the k + 1 values in $\{0, 1, 2, \ldots, k\}$ must be missing from T, and we conclude that $\mathcal{G}(n) = \max T \leq k$.

The next definition will be convenient in two proofs.

Definition 3. Let $x, m, n \in \mathbb{N}$ such that $x \ge 2$. We say that m is *x*-even if $m \equiv k \pmod{2x}$ for some $k \in \{0, 1, \dots, x-1\}$, and we say that m is *x*-odd otherwise. We say that m and n have the same *x*-parity if m and n are both *x*-even or both *x*-odd.

Proposition 2. If the subtraction set is $\{x\}$, then $\mathcal{G}(n) = 0$ if n is x-even and 1 otherwise. Thus, the nim-sequence is $(0^{x}1^{x})$ and the period is 2x.

Proof. We will prove this result by induction on n. If n < x, then $\mathcal{G}(n) = \max \emptyset = 0$. Now suppose that $n \ge x$ and the result holds for values smaller than n. Then $\mathcal{G}(n) = \max{\{\mathcal{G}(n-x)\}}$. If n is x-even, n-x must be x-odd, and we conclude by induction that $\mathcal{G}(n) = \max\{1\} = 0$. Similarly, if n is x-odd, then n-x is x-even and $\mathcal{G}(n) = \max\{0\} = 1$. Thus, nim-sequence is $(0^x 1^x)$ and the period is 2x.

3. The Proofs of the Ferguson-like Theorems

Theorem 2 (Ferguson's Pairing Property) is a general result that works for subtraction sets of any size. The proof can be found at [2, p. 86] and is similar to the proof of Theorem 4.

Our strategy for determining the periodicity of the nim-values for a subtraction $\{x, y\}$ will be to determine Ferguson-like rules for determining exactly when $\mathcal{G}(n) = 0$ and $\mathcal{G}(n) = 2$. We start with the criteria for when $\mathcal{G}(n) = 2$ since we will use the result in the proof of Theorem 4.

Theorem 3. Let $S = \{x, y\}$ with x < y. Then $\mathcal{G}(n) = 2$ if and only if both

- 1. $\mathcal{G}(n-x) = 1$ and
- 2. G(n-y) = 0.

Proof. First, suppose that $\mathcal{G}(n-x) = 1$ and $\mathcal{G}(n-y) = 0$. Then $\mathcal{G}(n) = \max\{\mathcal{G}(n-x), \mathcal{G}(n-y)\} = \max\{1, 0\} = 2$. So suppose that $\mathcal{G}(n) = 2$. Since $2 = \mathcal{G}(n) = \max\{\mathcal{G}(n-x), \mathcal{G}(n-y)\}$, we conclude that $\{\mathcal{G}(n-x), \mathcal{G}(n-y)\} = \{0, 1\}$. Suppose toward a contradiction that $\mathcal{G}(n-x) = 0$. Then by Theorem 2, we conclude that $1 = \mathcal{G}(n) = 2$, a contradiction. Therefore, $\mathcal{G}(n-x) = 1$ and $\mathcal{G}(n-y) = 0$.

We can now determine the final Ferguson-like property.

Theorem 4. Let $S = \{x, y\}$ with x < y. If $n \ge y$, then $\mathcal{G}(n) = 0$ if and only if $\mathcal{G}(n-y) = 1$.

Proof. Let n be the smallest value for which this fails, and suppose first that $\mathcal{G}(n) \neq 0$ and $\mathcal{G}(n-y) = 1$. Then $0 \neq \mathcal{G}(n) = \max{\mathcal{G}(n-x), \mathcal{G}(n-y)}$. Since $\mathcal{G}(n-y) = 1$, we have that $\mathcal{G}(n) \neq 1$ and determine that $\mathcal{G}(n) = 2$ by Proposition 1. By Theorem 3, we conclude that $0 = \mathcal{G}(n-y) = 1$, a contradiction.

Now suppose that $\mathcal{G}(n) = 0$ and $\mathcal{G}(n-y) \neq 1$. Then $0 = \mathcal{G}(n) = \max\{\mathcal{G}(n-x), \mathcal{G}(n-y)\}$, so $\mathcal{G}(n-y) \neq 0$. Thus, $\mathcal{G}(n-y) = 2$ by Proposition 1. By Theorem 3, we conclude that $\mathcal{G}((n-x)-y) = \mathcal{G}((n-y)-x) = 1$. Since *n* is the minimal counterexample, n-x < n, and $\mathcal{G}((n-x)-y) = 1$, we conclude that $\mathcal{G}(n-x) = 0$. Then $0 = \mathcal{G}(n) = \max\{\mathcal{G}(n-x), \mathcal{G}(n-y)\} = \max\{0, 2\} = 1$, a contradiction. \Box

4. The Period of a 2-element Subtraction Game

We can now bound the period when the subtraction set is $\{x, y\}$.

Proposition 3. Let $S = \{x, y\}$ with x < y. Then the nim-values are periodic with period at most x + y.

Proof. It is sufficient to prove that $\mathcal{G}(n-x-y) = \mathcal{G}(n)$ for all $n \ge x+y$. So fix an $n \ge x+y$. By Proposition 1, $\mathcal{G}(n) \in \{0,1,2\}$. If $\mathcal{G}(n) = 0$, then $\mathcal{G}(n-y) = 1$ by Theorem 4, and $\mathcal{G}(n-x-y) = \mathcal{G}((n-y)-x) = 0$ by Theorem 2. If $\mathcal{G}(n) = 1$, then $\mathcal{G}(n-x) = 0$ by Theorem 2, and $\mathcal{G}(n-x-y) = \mathcal{G}((n-x)-y) = 1$ by Theorem 4.

Finally, suppose that $\mathcal{G}(n) = 2$. Then $\mathcal{G}(n-x) = 1$ and $\mathcal{G}(n-y) = 0$ by Theorem 3. Since $1 = \mathcal{G}(n-x) = \max\{\mathcal{G}(n-2x), \mathcal{G}(n-x-y)\}$ and $0 = \mathcal{G}(n-y) = \max\{\mathcal{G}(n-2y), \mathcal{G}(n-x-y)\}$, we conclude that $\mathcal{G}(n-x-y)$ can be neither 0 nor 1. By Proposition 1, we conclude that $\mathcal{G}(n-x-y) = 2$. Thus, $\mathcal{G}(n) = \mathcal{G}(n-x-y)$ holds in every possible value of $\mathcal{G}(n)$.

We now prove Theorem 1 with two separate results.

Proposition 4. If the subtraction set is $\{x, (2m+1)x\}$ for some $m \ge 1$, then $\mathcal{G}(n) = 0$ if n is x-even and $\mathcal{G}(n) = 1$ if n is x-odd. In particular, the nim-sequence is $(0^{x}1^{x})$ and the period is 2x.

Proof. We induct on n. The result holds for n < (2m + 1)x by Proposition 2. So suppose $n \ge (2m + 1)x$ and that the result holds for values smaller than n. Then $\mathcal{G}(n) = \max\{\mathcal{G}(n-x), \mathcal{G}(n-(2m+1)x)\}$. Since n-x and n-(2m+1)x both have different x-parity than n, we conclude that $\mathcal{G}(n) = \max\{0\} = 1$ if n is x-odd and $\mathcal{G}(n) = \max\{1\} = 0$ if n is x-even by induction. Thus, the nim-sequence is $(0^{x}1^{x})$ and the period is 2x.

Every other case is handled in the following proposition.

Proposition 5. Let $S = \{x, y\}$ such that x < y and y is not an odd multiple of x. Then the period of the subtraction game with subtraction set S is x + y.

Proof. By Proposition 3, it is sufficient to show that the sequence is not periodic within the first x + y terms. We write y = (2x)m + r for some m and r such that -x < r < x. An easy calculation shows that the first x + y terms of the sequence are

$$(0^x 1^x)^m 0^r 2^{x-r} 1^r$$

if $0 \leq r < x$ and

$$(0^x 1^x)^m 2^{x+r}$$

otherwise. In either case, the period is not less than x + y by inspection, so we conclude by Proposition 3 that the period is x + y exactly.

References

- [1] R. Austin, Impartial and Partisan Games. Master's thesis, Calgary, 1976.
- [2] E. Berlekamp, J. Conway, and R. Guy, Winning Ways for Your Mathematical Plays, Volume 1. AK Peters/CRC Press, 2001.
- [3] E. Berlekamp, J. Conway, and R. Guy, Winning Ways for Your Mathematical Plays, Volume 2. AK Peters/CRC Press, 2001.
- [4] E. Berlekamp, J. Conway, and R. Guy, Winning Ways for Your Mathematical Plays, Volume 3. AK Peters/CRC Press, 2001.
- [5] R. Guy, Unsolved problems in combinatorial games, in *Combinatorics Advances*, pp. 161–179, Springer, 1995.