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Abstract
We utilize the saddle point method for obtaining the asymptotic growth of the
sums of powers of multinomial coe�cients. We give an overview of the many places
that such sums of powers of multinomial coe�cients appear in the mathematical
literature. Our proof methodology follows an analytic (complex-valued) approach,
including usage of the saddle point method.

Dedicated to Dr. Daniel D. Bonar, the George R. Stibitz Distinguished Professor
Emeritus in Mathematics and Computer Science at Denison University, a professor,
mentor, and dear friend, in celebration of his 50 years of teaching Mathematics.

1. Introduction and Motivation

We define

am,k(n) :=
X

i1+i2+···+im=n

✓
n

i1, i2, . . . , im

◆k

,

and
bm,k(n) :=

am,k(n)
(n!)k

.

We believe that the asymptotic properties of these sequences have only been pre-
cisely analyzed in special cases. Due to the fundamental nature of these integer
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sequences, we desired to make a comprehensive characterization of the asymptotic
growth of these integer sequences, as n ! 1, for any (fixed) positive integers m
and k. Our main result is the following:

Theorem 1. For (fixed) positive integers m and k, as n ! 1, the first-order
asymptotic growth of bm,k(n) is

bm,k(n) ⇠
⇣em

n

⌘kn
r

1
2⇡nkm�1

⇣ m

2⇡n

⌘(k�1)m
. (1)

Stirling’s approximation is n! ⇠
p

2⇡n (n/e)n. Taking a power of k in Stirling’s
approximation, and then multiplying the result on both sides of Equation (1), our
theorem immediately yields the following corollary.

Corollary 1. For (fixed) positive integers m and k, as n ! 1, the first-order
asymptotic growth of am,k(n) is

am,k(n) ⇠ mkn

r
mk�1

km�1

⇣ m

2⇡n

⌘(k�1)(m�1)
. (2)

These integer sequences are intimately connected with hypergeometric functions.
The general family am,k(n) appears, for instance, in Barrucand [2]. The asymptotic
growth of a2,k(n) has been known for almost a century [15], and perhaps longer.

In the case k = 1, the values of am,k(n) are simply the powers of m, namely,
am,1(n) = mn.

The k = 2 case has myriad interpretations. Consider a uniform planar random
walk, starting at the origin and consisting of m steps, each of length 1, and each
taken in a random direction (independent of all previous choices of direction). Then
am,2(n) is the 2nth moment of the distance from the origin after such a walk. (See
Richards and Cambanis [16], as well as Borwein et al. [4].)

Richmond and Shallit [18] also point out that am,k(n) enumerates the abelian kth
powers. An abelian kth power consists of a sequence of k blocks, each of length n.
The first block consists of n letters selected from an alphabet with m letters (with
repetitions allowed). Each of the remaining k � 1 blocks is a permutation of the
letters in the first block.

Bernstein and Lange [3] use the family of sequences am,2(n); they make a “con-
nection . . . between anticollision factors and sums of squares of multinomials.” Ver-
rill [20] gives an explicit recurrence for am,2(n) for each fixed m.

The integers a4,2(n) are known as the Domb numbers; they enumerate the 2n-step
polygons on a diamond lattice (see [8] and also OEIS #A002895). The sequence
a2,2(n) =

�2n
n

�
consists of the central binomial coe�cients, which are utilized in

many applications; see OEIS #A000984.
The sequence a2,3(n) consists of the Franel numbers, which have dozens of ap-

plications. See OEIS #A000172 as a starting point for the vast literature on this
sequence.
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The sequences am,k(n) were recently used in their full generality in a manuscript
by Tao [19]; see especially Tao’s Theorem 7 (and its proof), in which he analyzes
“the mean number of occurrences of [a pattern] p in the abelian sense in a word of
length n over an alphabet of m � 4 letters”. See also Tao’s Corollaries 2 and 3.

Remark 1. We summarize special cases that were already proved in the literature.
k = 2: The asymptotic growth of am,2(n), for fixed m, as n ! 1, was es-

tablished by Richmond and Rousseau [17] using an approach with complex func-
tions, similar to the methodology that we utilize here. (An alternative approach
to establishing the asymptotic growth was later discovered by Richmond and Shal-
lit [18].) Richmond and Rousseau [17] analyzed one Hayman-admissible function.
(For comparison, and to note why the general analysis is more complicated, we
emphasize that, for general k, we compare the behavior of 2P + 1 functions, where
P = 2b(k + 2)/8c+ 1; see our Equation (5).)

m = 2: The asymptotic growth of a2,k(n) was analyzed as early as 1925; see
Polya and Szegő [15, Problem 40, p. 55, of the 1972 English edition]. See also
Farmer and Leth [9] and Wilson [21] for more recent discussions.

Our result in Corollary 1 is a full generalization of these cases. We analyze the
asymptotic growth of am,k(n) for any (fixed) positive integers m and k, as n !1.

2. Notation and Background

Since
� n
i1,i2,...,im

�
= n!

i1!i2!···im! , it follows that

bm,k(n) =
X

i1+i2+···+im=n

1
(i1!)k

1
(i2!)k

· · · 1
(im!)k

.

Now we define

fk(z) :=
1X

i=0

zi

(i!)k
,

and we observe that 1X
n=0

bm,k(n)zn = (fk(z))m.

The function fk(z) will be a central object of study, in our proof methodology.
We use the Pochhammer symbol, (↵)n := (↵)(↵ + 1) · · · (↵ + n� 1) and also the

notation for generalized hypergeometric series:

pFq

⇣a1, . . . , ap

b1, . . . , bq
; z
⌘

=
1X

j=0

(a1)j · · · (ap)j

(b1)j · · · (bq)j

zj

j!
.
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We can frame the analysis of fk(z) in terms of hypergeometric series. When k is a
positive integer, we have

fk(z) = 0Fk�1

⇣ ;
1, . . . , 1; z

⌘
. (3)

For this interpretation of fk(z), we have p = 0, and therefore there are no a’s.
Regarding the b’s, the sequence of 1’s has length k � 1, so q = k � 1. To analyze
the asymptotic behavior of fk(z), we use Askey and Daalhuis [1, Section 16.11].
Following their notation, in (16.11.3), their  is equivalent to our k, and their ⌫ is
equal to our �(k � 1)/2. Unfortunately, however, we cannot use their formulation
from (16.11.4) and (16.11.5), because in our situation, the bj ’s are repeated; this
causes the denominator of (16.11.5) to be zero. An alternative formulation must
be used [6]. Curious readers can also compare with the notation from Paris and
Kaminski [12, section 2.3], where many of the relevant details are explained. As
further background reading for the interested reader, one might consider the earlier
treatments found in [5, Section 12] and [13, Section 2.3].

3. Proofs

Our overall goal is to treat the functions under study as complex-valued objects,
and then to use the saddle point method to retrieve asymptotic information about
bm,k(n). For a very readable discussion about such methods, we suggest Flajolet
and Sedgewick [10, Chapter VIII]. We have

bm,k(n) =
1

2⇡i

Z
⌦

(fk(z))m

zn+1
dz, (4)

where ⌦ is a closed contour in the counterclockwise direction about the origin. To
use the saddle point method, we focus on a contour that is a circle centered at the
origin. So we use ⌦ := {z = ⇢ei✓ | � ⇡  ✓  ⇡}; in particular, we use a contour ⌦
that only depends on the choice of ⇢.

Before we use the saddle point method, it is helpful to decompose fk(z) =P1
i=0 zi/(i!)k. We need to be mindful of the asymptotic behavior of 1/(n!)k for

large n. For this purpose, we replace the discrete n! by the continuous �(s+1), and
we expand as a series. It is well known that there are unique constants c(j)

k such
that

1
(�(s + 1))k

⇠ kks+k/2

(2⇡)(k�1)/2

1X
j=0

c(j)
k

�(ks + k+1
2 + j)

, as s !1.

As for the values of these constants, in the words of Paris and Kaminski, “their
actual evaluation turns out to be the most di�cult part of the theory” [12, p. 57].
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The first several values of c(j)
k are:

c(0)
k = 1, c(1)

k =
k2 � 1

24
, c(2)

k =
(k2 � 1)(k2 + 23)

(242)(2)
,

etc. Paris and Kaminski [12, p. 58] prove the approximation

fk(z) ⇠
PX

r=�P

Ek,r(z), (5)

as |z|!1, where the functions Ek,r(z) are defined as

Ek,r(z) :=
exp(k z1/ke2⇡ir/k)p

k (2⇡)(k�1)/2z(k�1)/(2k)e2⇡ir(k�1)/(2k)

1X
j=0

c(j)
k

kjzj/ke2⇡irj/k
. (6)

As in Paris and Kaminski’s exposition, “P is chosen such that 2P +1 is the smallest
odd integer satisfying 2P +1 > 1

2.” In our case,  = k. An elementary calculation
shows that, for our analysis, the relevant value of P is exactly P = 2b(k+2)/8c+1.

Now we need to precisely analyze the behavior of each function Ek,r(z).

Lemma 1. Consider r 6= 0 with �P  r  P . Let z = ⇢ei✓ where �⇡  ✓  ⇡.
Then we have

|Ek,r(⇢ei✓)| = O

✓
exp

�
k ⇢1/k cos(⇡/k)

�
⇢(k�1)/(2k)

◆

as ⇢ !1.

Proof. We consider the exponential term exp(k z1/ke2⇡ir/k) in the numerator of
Ek,r(z). Since z = ⇢ei✓, it follows that

exp
�
k z1/ke2⇡ir/k

�
= exp

�
k⇢1/kei(✓+2⇡r)/k

�
.

Now taking the modulus, we have
�� exp

�
k z1/ke2⇡ir/k

��� = �� exp
�
k⇢1/k cos ((✓ + 2⇡r)/k)

���.
Since r 6= 0 and �P  r  P , then we have 0 < |r|  k. Only using the fact that
0 < |r|  k, it follows immediately from basic trigonometry that cos((✓+2⇡r)/k) 
cos(⇡/k) for all �⇡  ✓  ⇡. So it follows that

�� exp
�
k z1/ke2⇡ir/k

���  exp
�
k ⇢1/k cos(⇡/k)

�
.

Now the lemma follows immediately, by inspecting the moduli of Ek,r(⇢ei✓).

When z = ⇢ei✓ with ✓ = ±⇡, we observe that

exp
�
k ⇢1/k cos(⇡/k)

�

�� exp(k z1/k)

��.
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It follows by Lemma 1 that, for r 6= 0 with �P  r  P , and �⇡  ✓  ⇡, we have
��Ek,r(⇢ei✓)

�� = O
���Ek,0(⇢e±i⇡)

���.
In other words, |Ek,r(⇢ei✓)| (for r 6= 0 and for any z on ⌦) is dominated by the
value of |Ek,0(z)| with z at either endpoint of ⌦.

Moreover, the value of |Ek,0(⇢ei✓)| increases monotonically (for fixed ⇢) as ✓
decreases from ⇡ down to 0, and similarly, increases monotonically as ✓ increases
from �⇡ up to 0. (This can be checked by some tedious algebra; see, e.g., [10,
Ch. VIII].) When considering

1
2⇡i

Z
⌦

(Ek,0(z))m

zn+1
dz,

we will see that it su�ces to consider only the portion of ⌦ corresponding to
�✓0  ✓  ✓0 for (say) ✓0 = n�4/9. (We will clarify the reasoning for 4/9 in
Section 3.1.2.) The remainder of the contribution from the rest of the contour ⌦
will have asymptotically lower order. Moreover, |Ek,r(⇢ei✓)| is bounded above by
|Ek,0(⇢e±i⇡)|, i.e., by the size of |Ek,0(z)| at the endpoints of ⌦. Therefore, the
contribution from the Ek,r(z) for r 6= 0 can safely be ignored, when computing the
first-order asymptotic growth of bm,k(n).

For this reason, we only use Ek,0 (and not the other Ek,r’s) when calculating the
asymptotic behavior of bm,k(n). In other words, Equation (4) can be simplified to

bm,k(n) ⇠ 1
2⇡i

Z
⌦

(Ek,0(z))m

zn+1
dz.

3.1. Saddle Point Method

Now we use the saddle point technique. See de Bruijn [7], Good [11], or Flajolet
and Sedgewick [10] for a description of this technique. The basic motivation of the
saddle point method is to deform the contour of integration ⌦ to a radius ⇢, in
such a way that the contribution to the integral representation of bm,k(n) is well
approximated by a Gaussian integral over the range �✓0 < ✓ < ✓0, i.e., near the
large, positive portion of the real axis. The integral representation of bm,k(n) over
the remainder of ⌦ can then be truncated (called “pruning the tails”) because it is
much smaller, as compared to the aforementioned Gaussian integral.

If we define
Lk,j(⇢) := @j

u ln(Ek,0(⇢eu))|u=0 ,
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then, by Cauchy’s theorem, we have

bm,k(n) ⇠ 1
2⇡i

Z
⌦

(Ek,0(z))m

zn+1
dz

=
1
⇢n

1
2⇡

Z ⇡

�⇡
exp

⇣
m
�
ln(Ek,0(⇢)) + iLk,1(⇢)✓

� Lk,2(⇢)✓2/2� iLk,3(⇢)✓3/6 + . . .
�
� ni✓

⌘
d✓. (7)

3.1.1. Finding the Location of the Saddle Point

To find the location ⇢ of the saddle point, we need:

@

@⇢

⇣
m ln(Ek,0(⇢))� n ln(⇢)

⌘
= 0,

and, therefore,

m
E0

k,0(⇢)
Ek,0(⇢)

� n

⇢
= 0.

Thus, the saddle point ⇢ is the unique root of smallest modulus of

m⇢E0
k,0(⇢)� nEk,0(⇢) = 0. (8)

Since Lk,1(⇢) := @u ln(Ek,0(⇢eu))|u=0, then it follows that:

Lk,1(⇢) =
⇢E0

k,0(⇢)
Ek,0(⇢)

. (9)

Combining (8) and (9), we see that the saddle point ⇢ satisfies

mEk,0(⇢)Lk,1(⇢)� nEk,0(⇢) = 0,

but Ek,0(⇢) 6= 0. So dividing by Ek,0(⇢) and multiplying by i✓, we obtain

miLk,1(⇢)✓ � ni✓ = 0.

Therefore, Equation (7) simplifies, when ⇢ is chosen at the saddle point, to become

bm,k(n) ⇠ 1
⇢n

1
2⇡

Z ⇡

�⇡
exp

⇣
m
�
ln(Ek,0(⇢))� Lk,2(⇢)✓2/2� iLk,3(⇢)✓3/6 + . . .

�⌘
d✓,

or, more simply,

bm,k(n) ⇠ 1
⇢n

(Ek,0(⇢))m

2⇡

Z ⇡

�⇡
exp

⇣
m
�
� Lk,2(⇢)✓2/2� iLk,3(⇢)✓3/6 + . . .

�⌘
d✓.

We have

Ek,0(z) =
exp(k z1/k)p

k (2⇡)(k�1)/2z(k�1)/(2k)

�
1 + ⇥(z�1/k)

�
, (10)
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as z ! 1 along the positive real axis. Solving for E0
k,0(z), and then using Equa-

tion (8), and only preserving the terms up to first order (as z !1 along the positive
real axis), we obtain m⇢(z(1�k)/k) � n = 0, and we conclude that the location of
the saddle point is

⇢ ⇠ (n/m)k, n !1. (11)

3.1.2. Splitting the Contour

We recall Lk,j(⇢) := @j
u ln(Ek,0(⇢eu))|u=0. Using (10), we obtain, for all j � 1,

Lk,j(⇢) = @j
u ln(Ek,0(⇢eu))|u=0 ⇠

⇢1/k

kj�1
. (12)

Next, we choose a splitting value ✓0 with the property that mLk,2(⇢)✓2
0 ! 1 and

mLk,3(⇢)✓3
0 ! 0 as n !1 (i.e., as ⇢ !1). These two conditions translate to:

m
⇣⇢1/k

k

⌘
✓2
0 !1, and m

⇣⇢1/k

k2

⌘
✓3
0 ! 0.

The location of the saddle point is ⇢ ⇠ (n/m)k, so the previous equations become

m
⇣n/m

k

⌘
✓2
0 !1, and m

⇣n/m

k2

⌘
✓3
0 ! 0,

so it su�ces to have n✓2
0 ! 1 and n✓3

0 ! 0. So we need an angle ✓0 = n↵ for
�1/2 < ↵ < �1/3. For instance, we can use ✓0 = n�4/9.

3.1.3. Pruning the Tails

To prune the tails, let T := (�⇡,�✓0)[(✓0,⇡) denote the tail region of the contour.
We compute

���� 1
⇢n

1
2⇡

Z
T

(Ek,0(⇢ei✓))m

eni✓
d✓

���� = 1
⇢n

1
2⇡

O

✓✓
exp

�
k ⇢1/k cos(✓0/k)

�
⇢(k�1)/(2k)

◆m◆
, (13)

but the saddle point is located at distance ⇢ ⇠ (n/m)k and we are using ✓0 = n�4/9,
so cos(✓0/k) = O(1� (✓0/k)2/2). Therefore we can rewrite Equation (13) as
���� 1
⇢n

1
2⇡

Z
T

(Ek,0(⇢ei✓))m

eni✓
d✓

���� = 1
(n/m)kn

1
2⇡

O

✓
exp

�
kn
�
1� (n�4/9/k)2/2

��
(n/m)m(k�1)/2

◆

or even more simply as
���� 1
⇢n

Z
T

(Ek,0(⇢ei✓))m

eni✓
d✓

���� = O
�
(em/n)kn exp(�n1/9/(2k))(m/n)(k�1)m/2

�
.
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Looking ahead, for comparison to the final asymptotic behavior of bm,k(n) in Equa-
tion (14), and noting that k and m are held constant, we see that exp(�n1/9/(2k))
decreases much faster than

p
1/n, and thus

���� 1
⇢n

1
2⇡

Z
T

(Ek,0(⇢ei✓))m

eni✓
d✓

���� = o

 �����
1
⇢n

1
2⇡

Z ✓0

�✓0

(Ek,0(⇢ei✓))m

eni✓
d✓

�����
!

,

so the region T = (�⇡,�✓0) [ (✓0,⇡) of ⌦ can be safely ignored.

3.1.4. Gaussian Approximation

Now we need to make a Gaussian approximation for the central region of ⌦, i.e.,
for the integral over the region (�✓0, ✓0). We compute

bm,k(n) ⇠ 1
⇢n

(Ek,0(⇢))m

2⇡

Z ✓0

�✓0

exp
⇣
m
�
� Lk,2(⇢)✓2/2� iLk,3(⇢)✓3/6 + . . .

�⌘
d✓

⇠ 1
⇢n

(Ek,0(⇢))m

2⇡

Z ✓0

�✓0

e�m Lk,2(⇢)✓2/2 d✓
⇣
1 + O

⇣⇢1/k

k2
✓3
0

⌘⌘
.

We recall Lk,3(⇢) ⇠ ⇢1/k/k2, as proved in (12). As before, we have ⇢ ⇠ (n/m)k,
and we are working on the (�✓0, ✓0) portion of ⌦. Putting these together, we get
⇢1/k

k2 ✓3
0 ⇠

n/m
k2 (n�4/9)3 = O(n�1/3). Therefore, we get

bm,k(n) ⇠ 1
⇢n

(Ek,0(⇢))m

2⇡

Z ✓0

�✓0

e�mLk,2(⇢)✓2/2 d✓.

Again using (12), we have Lk,2(⇢) ⇠ ⇢1/k/k, and thus

bm,k(n) ⇠ 1
⇢n

(Ek,0(⇢))m

2⇡

Z ✓0

�✓0

e�m⇢1/k✓2/(2k) d✓.

We do not change the first order asymptotics if we include the region (�1,�✓0) [
(✓0,1) in the contour, because we have

Z 1

✓0

e�m⇢1/k✓2/(2k) d✓ = O(e�m⇢1/k✓2
0/(2k)) = O(e�n�1/9/(2k)),

so the integral over this region is exponentially small. So we extend the contour
from (�✓0, ✓0) to (�1,1), and we get

bm,k(n) ⇠ 1
⇢n

(Ek,0(⇢))m

2⇡

Z 1

�1
e�m⇢1/k✓2/(2k) d✓ =

(Ek,0(⇢))m

⇢n

p
kp

2⇡m⇢1/k
.



INTEGERS: 17 (2017) 10

3.1.5. Conclusion of the Proof

Utilizing the form of Ek,0(⇢), which was already given in (10), it follows that, for
any (fixed) positive integers m and k, as n !1, we have

bm,k(n) ⇠
⇣em

n

⌘kn
r

1
2⇡nkm�1

⇣ m

2⇡n

⌘(k�1)m
. (14)

This concludes the proof of Theorem 1.

4. Future Directions

Theorem 1 and Corollary 1 characterize the asymptotic properties of a general
family of integer sequences, am,k(n). We naturally view m and k as fixed, and we
study the asymptotic analysis as n !1. For a future direction of study, it would
be natural to view the m and k as various kinds of functions of n, and to determine
the asymptotic growth of ak,m(n) as m and k also grow (at various rates) with n.
Such an investigation is beyond our scope in this relatively short treatment, but the
recent work of Pemantle and Wilson [14] might be utilized for such a purpose.
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