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The precise analysis of the variance of the profile of a suffix tree has been a longstanding open problem. We analyze
three regimes of the asymptotic growth of the variance of theprofile of a suffix tree built from a randomly gener-
ated binary string, in the nonuniform case. We utilize combinatorics on words, singularity analysis, and the Mellin
transform.
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1 Introduction
One open problem about suffix trees is how to characterize thenumber of internal nodes on thekth level of
a suffix tree that hasn leaves. Park et al. [PHNS09] precisely analyzed the profile of retrieval tries in 2009.
Ward has been working on the analogous problem in suffix treesfor a decade; see, e.g., [NW11, War07].
While the mean profile of retrieval trees and suffix trees are the same (asymptotically, up to first order, in
the main range of interest of the parameters), the variancesof the profiles of these two classes of trees are
different. The goal of this paper is to precisely analyze thevariance of the profile of suffix trees.

In retrieval trees, the strings inserted into the tree structure are often considered to be independent; such
was the case in [PHNS09]. In contrast to this, in suffix trees,the strings inserted into the tree are suffixes
of a common string, so these strings are overlapping. The overlaps make the corresponding analysis much
trickier, as compared to [PHNS09].

We analyze a suffix tree built from the suffixes of a common string S = S1S2S3 . . ., where theSj ’s
are randomly generated, independent, and identically distributed. We view eachSj as a letter from the
alphabetA = {a, b}, whereP (Sj = a) = p andP (Sj = b) = q. (Without loss of generality, we assume
throughout thatp > q.) We useAℓ to denote the set of words of lengthℓ. For a wordu that consists ofi
occurrences of lettera andj occurrences of letterb, we useP(u) to denote the probability that a randomly
chosen word of length|u| is exactly equal tou, i.e.,P(u) := piqj .

Thejth string to be inserted into the suffix tree isS(j) := SjSj+1Sj+2 . . .. We consider a randomly
generated suffix treeTn built over the firstn suffixes ofS, i.e., built from the suffixesS(1) throughS(n).
Briefly, all n of these suffixes can be viewed as initially being placed at the root of the suffix tree. The
n suffixes are then filtered down to the left or right children ofthe root, making the classification of the
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suffixes according to whether the first letter of each suffix is“a” or “ b”, respectively. The filtering contin-
ues down through the tree, with splitting at thejth level according to thejth letter in the corresponding
suffixes in that portion of the tree.

For each wordu ∈ Ak, the suffix treeTn will contain the internal node corresponding tou if and
only if the base-stringS contains at least two copies of the wordu within its firstn + k − 1 characters.
(Equivalently,Tn contains the internal node corresponding tou if and only if at least two of the suffixes
S(1) throughS(n) haveu as a prefix.) For this reason, we defineIn,u := 1 if u appears at least twice in
S1S2 . . . Sn+k−1, or In,u := 0 otherwise. We useXn,k to denote the number of internal nodes inTn at
levelk. With the above notation in place, we observe thatXn,k =

∑
u∈Ak In,u. This decomposition will

be crucial to our proofs, which start in Section 3.
Finally, following the lead of [PHNS09], we assume that the limit α := limn→∞ k/ log(n) exists.

2 Main Results
The value ofVar(Xn,k) depends qualitatively on the quantityα, which describes the relationship be-
tweenn andk via the relationk/ log(n) → α. It turns out that there are two particular alpha-values of
importance,

α1 = −
1

log(q)
, α2 = −

p2 + q2

p2 log(p) + q2 log(q)
.

We do not attempt, as Park et al. did in [PHNS09], to analyze the cases whereα is exactly equal to one of
theseαi, but instead assume that both|α−αi| are strictly positive. Given this restriction, it is permissible
to take the approximationk = α log(n), which we do henceforth without comment.

The variance obeys different laws depending on where the value ofα falls in the ranges defined by
theseαi. The range of most interest is (perhaps) the range in whichα1 < α < α2; we discuss this case in
Theorem 2. (The caseα < α1 is discussed in Theorem 1; and the caseα2 < α is handled in Theorem 3.)

Whenα is small, we have an easy and very strong bound on the decay ofVar(Xn,k).

Theorem 1 Whenα < α1, there existsB > 0 such that

Var(Xn,k) = O(e−nB

).

The proof of Theorem 1 follows from lemmas that mimic the techniques of [War05]; we omit it from
this shortened version. The intuitive meaning behind Theorem 1 is that levelk of the suffix tree is ex-
tremely likely to be completely filled (meaning the variancewill be extremely small) iflog(n) is suffi-
ciently large in comparison tok.

Our main results deal with the less trivial case whenα > α1. We first introduce the functions involved
in our main estimates, and provide a word on how we obtain them.

2.1 Functions Involved in Main Results; Methodology
Our basic device for computing the variance of the internal profile is to writeXn,k as a sum of indicator
variablesIn,u, and then evaluate

Var(Xn,k) = Var(
∑

u∈Ak

In,u) =
∑

u∈Ak

Var(In,u) +
∑

u,v∈Ak

u6=v

Cov(In,u, In,v). (1)
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Our final analysis of the sum of theVar(In,u) will be fairly simple: we will ultimately just have to
evaluate the inverse Mellin integral

1

2πi

∫ c+i∞

c−i∞

n−sf(s)
∑

u∈Ak

P(u)−s ds =
1

2πi

∫ c+i∞

c−i∞

f(s) nh(s) ds, (2)

where the functionh(s) will be given by

h(s) := −s+ α log(p−s + q−s).

(See [FGD95] for more details about the Mellin transform.) The functionh(s) is the same as analyzed
in [PHNS09], and their arguments extend seamlessly to our case.

On the other hand, the termsCov(In,u, In,v) for u 6= v will be novel and much more interesting.
To deal with them, we will consider all possible overlappingdecompositions(σw,wθ) of (u, v). To
accomplish this, we observe that

n−s
k−1∑

ℓ=1

∑

w∈Ak−ℓ

σ,θ∈Aℓ

P(w)−s(P(σ) + P(θ))−s =

k−1∑

ℓ=1

ℓ∑

i,j=0

(
ℓ

i

)(
ℓ

j

)
nH(s, (k−ℓ)/k, i/ℓ, j/ℓ), (3)

whereH(s, r, c, d) is defined as

H(s, r, c, d) := −s+ α(1 − r) log(p−s + q−s)− s
(α
k

)
log((pcq1−c)kr + (pdq1−d)kr).

Note: For ease of the (already cumbersome) notation, we havenot writtenα nor k as a parameter ofH .
We will substitute the right hand side of (3) forn−s

∑
u∈Ak P(u)−s into equation (2). We will use a

technique forH similar to that used forh, namely, summing over all possible valuespiqℓ−i andpjqℓ−j

of P(σ) andP(θ) respectively, and summingP(w) into a closed form, as was done at (2).
The dominant contribution to (3) comes from terms with smallr. Sincelimr→0H(s, r, c, d) = h(s),

this implies that
∑

u,v Cov(In,u, In,v) and
∑

u Var(In,u) have the same first-order asymptotic growth, as
functions ofn.

We will evaluate the inverse Mellin integral at (2) (and the analogous integral forH) by using either
the saddle point method or by taking the residue of the pole ofΓ(s+ 2) at s = −2; which device we use
will depend on the value ofα. Before giving our main results, we list the saddle points ofthe functions
h(s) andH(s, r, c, d), which are

ρ :=

(
−
α log(p) + 1

α log(q) + 1

)

log(p/q)
,

ρr,c,d :=

(
−
α(1− r) log(p) + 1 + (α/k) log((pcq1−c)kr + (pdq1−d)kr)

α(1− r) log(q) + 1 + (α/k) log((pcq1−c)kr + (pdq1−d)kr)

)

log(p/q)
. (4)

It is also easy to verify that for anyy ∈ Z, the values = ρ+ 2πiy/ log(p/q) is also a saddle point ofh,
and similarly,s = ρr,c,d + 2πiy/ log(p/q) is a saddle point ofH .

These saddle points will (at last) allow us to express an asymptotic value forVar(Xn,k) in the case
whereα1 < α < α2.
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2.2 Behavior in the main regime
Theorem 2 Assumeα satisfiesα1 < α < α2. Letρ andρr,c,d be as in (4). Then we have

Var(Xn,k) =
nh(ρ)(C1(n) + 2C2(n))√

log(n)
×
(
1 +O(log(n)−1)

)
.

TheC1(n) is given by

C1(n) =
∑

y∈Z

niℑ(h(ρ+iyK))f1(ρ+ iyK)Γ(ρ+ iyK + 1)√
2πh′′(ρ+ iyK)

,

whereK := 2π/ log(p/q) and wheref1(s) := 1 − 2−s − s2−s−2. RegardingC2(n), we definer = ℓ
k ,

c = i
ℓ , d = j

ℓ , and thenC2(n) is given by

C2(n) =
∑

0<ℓ<k
0≤i,j≤ℓ

(
ℓ

i

)(
ℓ

j

)
nH(ρr,c,d,r,c,d)

nh(ρ)

∑

y∈Z

niℑ(H(ρr,c,d+iyK,r,c,d))f2(ρr,c,d + iyK, ℓ, i, j)Γ(ρr,c,d + iyK + 2)√
2π ∂H

∂s (ρr,c,d + iyK, r, c, d)

× (1 +O(log(n)−1)).

with the functionf2(s, ℓ, i, j) given by

f2(s, ℓ, i, j) =
∑

m≥2

( piqℓ−ipjqℓ−j

piqℓ−i + pjqℓ−j

)m−1 Γ(s+m)

Γ(s+ 2)m!
Lm

( piqℓ−ipjqℓ−j

piqℓ−i + pjqℓ−j
,

piqℓ−ipjqℓ−j

(piqℓ−i + pjqℓ−j)2
, s+m

)
,

with

Lm(a, b, x) = a(m− 1)2 +m(2−m) + bmx.

Furthermore, the outer sum inC2(n) satisfies the decay condition that for any positive integerℓ0, the sum
over all ℓ > ℓ0 and1 ≤ i, j ≤ ℓ isO(n−(ℓ0/k)×β) for a fixedβ > 0.

2.3 Behavior in the polar regime
In the finalα-regime, whereα > α2, the asymptotics arise from the pole ats = −2, as the following
theorem states.

Theorem 3 Assume the parameterα satisfiesα > α2. Then for someǫ > 0, we have

Var(Xn,k) = nh(−2)(C1(n) + 2C2(n))× (1 +O(n−ǫ))

with f1, f2 as defined in Theorem 2, andC1(n), C2(n) are given by

C1(n) = f1(−2), C2(n) = f2(−2)
∑

0<ℓ<k
0≤i,j≤ℓ

(
ℓ

i

)(
ℓ

j

)
nH(−2,r,c,d)

nh(−2)

with the decay ofC2(n) as in Theorem 2.

Having stated our main results, we now proceed to the proof ofTheorems 2 and 3, which will occupy
the remainder of the paper.
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3 An Expression for the Variance
Our first task in proving Theorems 2 and 3 is to obtain an exact expression for the variance of the internal
profileXn,k. Recalling equation (1), we need to derive the values ofVar(In,u) andCov(In,u, In,v), so we
letUn denote the number of occurrences ofu in the firstn characters ofS, and we defineVn analogously.
Then inclusions-exclusion yields the representations

Var(In,u) =
(
1−

1∑

i=0

P(Un+k−1 = i)
)
−
(
1−

1∑

i=0

P(Un+k−1 = i)
)2

Cov(In,u, In,v) =
∑

0≤i,j≤1

(
P(Un+k−1 = i, Vn+k−1 = j)− P(Un+k−1 = i)× P(Vn+k−1 = j)

)
(5)

where we requireu andv to be distinct. Thus, to obtain an expression forVar(Xn,k), we just have to
evaluate all the probabilities in (5).

4 Explicit Expressions for Word-Occurrence Probabilities
To estimate the probabilities in (5), we use generating functions, and complex analysis. Motivated
by [BCN12], we define

ψ(z) = Cu,u(z)Cv,v(z)− Cu,v(z)Cv,u(z), and φu(z) = Cv,v(z)− Cu,v(z), (6)

where the functionsCx,y(z) arecorrelation polynomials, the fundamental device for dealing with the
phenomenon of word-overlaps. With these functions in hand,we can define generating-functions for all
the probabilities in (5). We summarize the result in the following proposition.

Proposition 1 Letψ(z) andφu(z) be as defined at (6), and define the functions

Du(z) = (1− z)Cu,u(z) + zkP(u), δu,v(z) = (1− z)ψ(z) + zk(φu(z)P(u) + φv(z)P(v)),

G
(u)
0 (z) = Cu,u(z), G

(u)
1 (z) = P(u)zk, G

(u,v)
0,0 (z) = ψ(z), G

(u,v)
1,0 (z) = δu,v(z)Cv,v(z)− ψ(z)Dv(z),

G
(u,v)
1,1 (z) = δu,v(z)

2 − δu,v(z)
(
Cv,v(z)Du(z) + Cu,u(z)Dv(z) + (1 − z)ψ(z)

)
+ 2ψ(z)Du(z)Dv(z),

(7)

with all v-counting functions defined in a manner analogous to theu-counting functions. Then we have
the closed-form power series expressions

G
(u)
i (z)

Du(z)i+1
=

∑

n≥0

znP(Un = i), and
G

(u,v)
i,j (z)

δu,v(z)i+j+1
=

∑

n≥0

znP(Un = i, Vn = j), 0 ≤ i, j ≤ 1.

(8)

Now we must derive the(n + k − 1)st coefficients of these generating functions. To do this, we
use Cauchy’s Integral Formula, following a standard argument in combinatorics on words. Our specific
methodology will rely on a vital fact about the denominatorsDu(z), Dv(z) andδu,v(z) of the probability
generating functions in (8).
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Lemma 1 There existK, ρ > 0 such that for allk > K and all u, v ∈ Ak, each of the polynomials
Du(z), Dv(z), and δu,v(z) has a unique root (defined respectively asRu, Rv andRu,v) in the disc
|z| ≤ ρ.

The proof forDu(z) andDv(z) is given in [JS05]; spatial constraints prevent us from giving the proof for
theδu,v(z) portion.

Armed with Lemma 1, we can estimate the word-counting coefficients of our generating functions to
within a factor ofO(ρ−n) by applying Cauchy’s Theorem to the contourz = |ρ|. The following theorem
gives the resultant estimates.

Theorem 4 Let the polynomialsDu, Dv, δu,v andG(u)
0 , G

(u)
1 , etc. be as in (7) and (8). If we define

c
(u)
0,0 = −

Cu,u(Ru)

D′
u(Ru)

, c
(u)
1,0 =

P(u)D′′
u(Ru)

D′
u(Ru)3

, c
(u)
1,1 =

P(u)

D′
u(Ru)2

,

then we have the following estimates

P(Un+k−1 = 0) ≈ c
(u)
0,0

1

Rn+k
u

, and P(Un+k−1 = 1) ≈ c
(u)
1,0

1

Rn
u

+ c
(u)
1,1

n

Rn+1
u

,

and the error in each case isO(ρ−n).
Similarly, for the joint events(Un+k−1 = i, Vn+k−1 = j), and

a
(u,v)
0,0 = −

ψ′(Ru,v)

δ′u,v(Ru,v)
, a

(u,v)
1,0,u = −

G
(u,v)
1,0 (Ru,v)δ

′′
u,v(Ru,v)

δ′(Ru,v)3
, a

(u,v)
1,1,u =

G
(u,v)
1,0 (Ru,v)

δ′(Ru,v)2
,

a
(u,v)
2,0 = −

G
(u,v)
1,1

′′(Ru,v)

2δ′u,v(Ru,v)3
+

3G
(u,v)
1,1

′(Ru,v)δu,v
′′(Ru,v)

2δ′u,v(Ru,v)4

−
G

(u,v)
1,1 (Ru,v)(−δ

′
u,v(Ru,v)δ

′′′
u,v(Ru,v) + 3δ′′u,v(Ru,v)

2)

2δ′u,v(Ru,v)5
,

a
(u,v)
2,1 =

G
(u,v)
1,1

′(Ru,v)

δu,v ′(Ru,v)3
−

3G
(u,v)
0,0 (Ru,v)δu,v

′′(Ru,v)

2δu,v ′(Ru,v)4
, a

(u,v)
2,2 = −

G
(u,v)
1,1 (Ru,v)

2δ′u,v(Ru,v)3
,

withG(u,v)
i,j (z) as in (8), we also obtain these estimates, where again, the error in each case isO(ρ−n):

P(Un+k−1 = 0, Vn+k−1 = 0) ≈ a
(u,v)
0,0

1

Rn+k
u,v

,

P(Un+k−1 = 1, Vn+k−1 = 0) ≈ a
(u,v)
1,0,u

1

Rn+k
u,v

+ a
(u,v)
1,1,u +

(n+ k)

Rn+k+1
u,v

,

P(Un+k−1 = 1, Vn+k−1 = 1) ≈ a
(u,v)
2,0

1

Rn+k
u,v

+ a
(u,v)
2,1

(n+ k)

Rn+k+1
u,v

+ a
(u,v)
2,2

(n+ k)(n+ k + 1)

Rn+k+2
u,v

.

Using these expressions, we can evaluate the expressions for Var(In,u) andCov(In,u, In,v) at (5) to
within a factor ofO(ρ−n). In doing this, however, it will be helpful to break up our estimates from
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Theorem 4 so that terms of common order inn are denoted under a single variable. We therefore define
the upper-case constants (we suppress the dependence onu andv in the notation)

C0 =
c
(u)
0,0 + c

(u)
1,0

Rk
u

+
kc

(u)
1,1

Rk+1
u

, C1 =
c
(u)
1,1

Rk+1
u

,

A0 =
a
(u,v)
0,0 + a

(u,v)
1,0,u + a

(u,v)
1,0,v + a

(u,v)
2,0

Rk
u,v

+

(
a
(u,v)
1,1,u + a

(u,v)
1,1,v

)
k

Rk+1
u,v

+
a
(u,v)
1,1 k(k + 1)

Rk+2
u,v

,

A1 =
a
(u,v)
1,1,u + a

(u,v)
1,1,v + a

(u,v)
2,1

Rk+1
u,v

+
a
(u,v)
2,2 (2k + 1)

Rk+2
u,v

, A2 =
a2,2

Rk+2
u,v

, B0 =
c
(v)
0,0c

(u)
0,0

(RuRv)k
,

B1 =
(
c
(u)
1,0 +

c
(u)
1,1

Ru

)c(u)0,0

Rk
v

+
(
c
(v)
1,0 +

c
(v)
1,1

Rv

)c(u)0,0

Rk
u

, B2 =
(
c
(u)
1,0 +

c
(u)
1,1

Ru

)(
c
(v)
1,0 +

c
(v)
1,1

Rv

)
. (9)

Returning to the expressionVar(Xn,k) =
∑

u∈Ak Var(In,u) +
∑

u,v∈Ak

u6=v

Cov(In,v), we obtain an ex-

pression for our ultimate desired quantity.

Corollary 1 LetAi, Bi, Ci be as defined in (9). WithAi, Bi andCi as in (9), we have the estimate

Var(Xn,k) =
∑

u∈Ak

(
1−

C0 + nC1

Rn
u

)
−
(
1−

C0 + nC1

Rn
u

)2

+
∑

u,v∈Ak

u6=v

2∑

i=0

( Ai

Rn
u,v

−
Bi

(RuRv)n

)
ni+O(ρ−n).

4.1 High-Probability Approximations

Our task is now to approximate the expression from Corollary1. To achieve this, we follow the usual
suffix-tree strategy: we compare the terms to simpler ones which will be accurate with very high proba-
bility, and use Mellin transforms to show that sum of the the differences between the old terms and the
new ones is negligible. Our two main tools for demonstratingthis negligibility are bounds provided by
the following lemma.

Lemma 2 We have the bounds

∑

u∈Ak

P(u)(Cu,u(1)− 1) = O(pk/2),
∑

u,v∈Ak

u6=v

P(u)Cu,v(1)Cv,u(1) = O(pk/2)

The first portion of Lemma 2 is proved in [JS05]; spatial constraints prevent us from proving the second
portion here. However, by rigorously expanding on the heuristicCu,u(1) ≈ 1 andCu,v(1)Cv,u(1) ≈ 0,
we obtain the following theorem which is one of the major steps of the proof.

Theorem 5 We define the termsPu,v := P(u)+P(v),, Θu,v := P(u)Cu,v(1)+P(v)Cv,u(1), andKu,v =
(2k − 1)P(u)P(v), and the expressions
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V1(n) :=
∑

u∈Ak

1− (1 + nP(u))e−nP(u) −
(
1− (1 + nP(u))e−nP(u)

)2
,

V2(n) :=
∑

u,v∈Ak

u6=v

n3
P(u)P(v)Ku,ve

−n(Pu,v−Θu,v),

V3(n) :=
∑

u,v∈Ak

u6=v

e−nPu,v (enΘu,v − 1)
(
1 + nPu,v + n2

P(u)P(v))− e−n(Pu,v−Θu,v)nΘu,v

(
1 + n(Pu,v −Θu,v)

)
.

Then, for everyǫ > 0, we have the estimate

Var(Xn,k) = V1(n)− V2(n) + 2V3(n) +O
(
n1+(α/2) log(p)+ǫ

)
.

We mention that the termV1(n) has already been analyzed in Park [PHNS09]. It gives the asymptotic
variance of the internal profile in atrie. The termV2(n) is negligible. Thus, after proving Theorem 5, all
that will remain will be to analyzeV3(n).

5 Distilling Essence of Estimate
We must now analyze the estimate from Theorem 5, which consists of the termsV1(n), V2(n) andV3(n).
We can deal with the first two of these terms in two quick theorems. Theorem 6 was proven in [PHNS09].
Theorem 7 has a short proof, which we omit in this concise version.

Theorem 6 An asymptotic expression forV1(n) is given by theC1(n) portions from Theorems 2 and 3.

Theorem 7 The termV2(n) from Theorem 8 satisfiesV2(n) = Var(Xn,k)O(n
−ǫ) for someǫ > 0.

For the rest of the paper, then, we concentrate on the portionV3(n), which contains the termΘu,v =
P(u)Cu,v(1) + P(v)Cv,u(1) and constitutes the really novel part of the whole enterprise. We deal
with Θu,v by nothing that, by Lemma 2, the quantitiesCu,v(1) andCv,u(1) are unlikely to simul-
taneously be large, so the approximationΘu,v ≈ P(u)Cu,v(1) is reasonable. From here, we note
that for Θu,v to be nonzero we must haveCu,v(1) > 0, in which case there exists some maximal
suffix of u which is also a prefix ofv. If we call this wordw, and then have the precise equality
P(u)Cu,v(1) = P(σ)P(w)P(θ)Cw,w(1). whereσ, θ ∈ Ak−|w| are such thatu = σw and v = wθ.
Then we employ the estimateCw,w(1) ≈ 1, again as suggested by Lemma 2. We thus have the central
estimateΘu,v ≈ P(σ)P(w)P(θ). Our strategy, then, is to make the substitutionsu = σw, v = wθ,
andΘu,v = P(σ)P(w)P(θ) in the summand ofV3(n), and then sum over all possible such decompo-
sitions. In the proof and final result it will be helpful to have the shorthandQσ,θ := P(σ) + P(θ) and
Tσ,θ := P(σ)P(θ), The following theorem states that this heuristic can be rigorously justified.

Theorem 8 Let Qσ,θ,Tσ,θ be as defined above, and define the functions

gw,σ,θ(n) = e−nP(w)Qσ,θ(exP(w)Tσ,θ − 1)
(
1 + xP(w)Qσ,θ + n2

P(w)2Tσ,θ)

− e−xP(w)(Qσ,θ−Tσ,θ)xP(w)Tσ,θ

(
1 + xP(w)(Qσ,θ − Tσ,θ)

)



Variance of the Internal Profile in Suffix Trees 9

andṼ3(n) :=
∑k−1

ℓ=1

∑
w∈Ak−ℓ

σ,θ∈Aℓ

gw,σ,θ(n). Then forV3(n) as given in Theorem 5, we have the estimate

V3(n) = 2Ṽ3(n) +O
(
n1+(α/2) log(p)+ǫ

)
.

One proves Theorem 8 by making the substitutionsP(w)Qσ,θ ≈ Pu,v andP(w)Tσ,θ ≈ Θu,v, and then
using Mellin transforms and Lemma 2 to show that the derived error-bound is satisfied.

6 Derivation of Asymptotics

To complete the main proof, it remains only to analyzeṼ3(n). We present the key results in this process
in a series of subsections.

6.1 Partitioning the Sum

Our first step is to partition the sum which comprisesṼ3(n). into subsets which share a common value for
the ordered pair(P(σ),P(θ)). We can rewrite the functiongw,σ,θ(n) from Thereom 8 as an infinite sum,

gw,σ,θ(x) = e−xP(w)Qσ,θ

∑

m≥2

(xP(w))mTm−1
σ,θ Qσ,θ

m!
Lm

(Tσ,θ

Qσ,θ

,
P(w)Tσ,θ

Qσ,θ

, x
)
.

with the functionLm given byLm(a, b, x) := a(m− 1)2 +m(2−m) + bmx. The termsQσ,θ andTσ,θ

only depend on theprobabilitiesof σ andθ; their internal composition does not matter. This allows a
great reduction in the number of terms to handle. With some abuse of notation, we define the terms

Q(k)
r,c,d := Qakrcbkr(1−c),akrdbkr(1−d) = pkrcqkr(1−c) + pkrdqkr(1−d),

T(k)
r,c,d := Takrcbkr(1−c),akrdbkr(1−d) = pkrcqkr(1−c) × pkrdqkr(1−d)

and then define the atom of all our remaining analysis, which is

g(x, r, c, d) =
∑

w∈Ak(1−r)

e−xP(w)Q(k)
r,c,d

∑

m≥2

(xP(w))mT(k)
r,c,d

m−1Q(k)
r,c,d

m!
Lm

(T(k)
r,c,d

Q(k)
r,c,d

,
P(w)T(k)

r,c,d

Q(k)
r,c,d

, x
)
.

(10)

With this notation, we have the following proposition.

Proposition 2 Letg(x, r, c, d) be as in (10). TheñV3(n) from Theorem 8 admits the representation

Ṽ3(n) =
∑

0<ℓ<k
0≤i,j≤ℓ

(
ℓ

i

)(
ℓ

j

)
g(n, ℓ

k ,
i
ℓ ,

j
ℓ ). (11)

Now we analyzeg.
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6.2 Analysis of g(n, r, c, d)
All our final estimates rest on our analysis of the functiong given in Proposition 2. To begin that analysis,
we take the Mellin transform ofg and, specifying the bounded portion

W (s, r, c, d) =
∑

m≥2

(T(k)
r,c,d

Q(k)
r,c,d

)m−1 Γ(s+m)

Γ(s+ 2)m!
Lm

(T(k)
r,c,d

Q(k)
r,c,d

,
T(k)
r,c,d

Q(k)
r,c,d

2
, s+m

)
,

we obtain

g∗(s, r, c, d) = Γ(s+ 2)W (s, r, c, d)Q(k)
r,c,d

−s
∑

w∈Ak(1−r)

P(w)−s

= Γ(s+ 2)W (s, r, c, d)Q(k)
r,c,d

−s(p−s + q−s)k(1−r).

We then consider the value ofn−sg∗(s, r, c, d), which will be the integrand of our inverse Mellin inte-
gral. Using the relationk = α log(n), we can writen−sg∗(s, r, c, d) = Γ(s + 2)W (s, r, c, d)nH(s,r,c,d),
where the functionH is as defined in Section 2.1. From here, we can recover the value ofg(n, r, c, d) via
an inverse Mellin transform. We summarize the results in thefollowing theorem.

Theorem 9 Define the discriminant

A(r, c, d) =
α(1 − r)

(α/k) log(Q(k)
r,c,d) + 1

.

Then the functiong(n, r, c, d) defined in (10) obeys the following asymptotic scheme.
If A(r, c, d) < α1, theng(n, r, c, d) = O(n−M ) for everyM > 0.
If α1 < A(r, c, d) < α2, then

g(n, r, c, d) =
nH(ρr,c,d,r,c,d)

√
log(n)

∑

y∈Z

niℑ(H(ρr,c,d+iyK,r,c,d))W (ρr,c,d + iyK, r, c, d)Γ(ρr,c,d + iyK + 2)√
2π ∂H

∂s (ρr,c,d + iyK, r, c, d)

× (1 +O(log(n)−1/2)).

If A(r, c, d) > α2, theng(n, r, c, d) = nH(−2,r,c,d)W (−2, r, c, d)(1 +O(n−ǫ)) for someǫ > 0.

The estimates of Theorem 9 can be derived using techniques that are standard (albeit pretty technical) in
the analysis of tree structures. In the first regime, one can show thatH(s, r, c, d) is always decreasing in
s, so integrating alongℜ(s) = s0 for H(s0) = −M gives the desired bound. In the second regime we
use the saddle-point method, and in the final regime, we derive the asymptotics by taking the residue from
the pole ofΓ(s+ 2) ats = −2.

Theorem 9, though certainly essential, is not in itself sufficient for our purposes, since we have to sum
g(n, ℓ

k ,
i
ℓ ,

j
ℓ ) over a set of triplets(ℓ, i, j) that will grow unboundedly large asn → ∞. The next lemma

gives the needed statement about uniform convergence.

Lemma 3 Supposeα1 < α < α2. Then there existsr0 > 0 such that for all triplets(r, c, d) in the rect-
angleR0 = [0, r0] × [0, 1]2, we haveα1 < A(r, c, d) < α2, and the saddle-point estimate of Theorem 9
holds uniformly. Furthermore, the analogous result holds in the polar case, whenα > α2.
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The claims aboutA(r, c, d) lying in particular ranges follow easily from the definitionof A(r, c, d). To
show uniformity in the saddle point case, we use bounds from [Olv70], which are uniform on the compact
setR0. In the polar regime, we again use the compactness ofR0 to show that thes-partial ofH(s, r, c, d)
ats = 0 is bounded below by a positive constant, meaning that for someǫ > 0, we can uniformly take the
left-hand side our Mellin box to beℜ(s) = −2− ǫ, thereby obtaining an error that isO(nH(−2−ǫ,r,c,d)),
with the(r, c, d) portion controlled by compactness.

7 Bounding the Tail
Theorem 9 justifies the content ofC2(n) in the main Theorems 2 and 3. However, we still have to justify
the uniform(1 + O(·)) error-bounds given in the leading equations of those theorems (which amounts
to showing that our estimates forg(n, r, c, d) are uniform outside the compact rectangleR0) as well as
prove our claim about the decay of the outer sum inC2(n).

We can accomplish both these tasks using the same argument. First, we unify thes-arguments forH in
the polar and saddle-point cases into a single term,

ρ̂r,c,d :=

{
ρr,c,d : α1 < α < α2

−1 : α > α2.
(12)

Then we note that if we define

G(r, c, d) = αr(−c log(c)− (1− c) log(1− c)− d log(d) − (1− d) log(1 − d)) +H(ρ̂r,c,d, r, c, d),
(13)

then by Stirling’s Formula we have
(
kr

krc

)(
kr

krd

)
g(n, r, c, d) = nG(r,c,d) × Y (log(n)),

where the functionY (log(n)) is unimportant except for the fact that its growth/decay arein log(n). We
now state an important and somewhat surprising result aboutthe functionG.

Lemma 4 Let the functionG(r, c, d) be as in (13), andA(r, c, d) the discriminant from Theorem 9. Then
for any fixedr such that the setΩr := {(c, d) : A(r, c, d) > α1} is nonempty, the map(c, d) →
G(r, c, d) attains its maximum at a unique ordered pair(cm(r), cm(r)) on the diagonal ofΩr.

The proof of Lemma 4, although not exceedingly difficult or technical, is rather long and (to us) not very
intuitive. We therefore omit it. Lemma 4 allows us to define the function

F (r) = G(r, cm(r), cm(r)) (14)

for everyr on which the setΩr defined in Lemma 4 is nonempty. We now state two vital facts about this
F , which are exactly the results needed complete the proof.

Lemma 5 The functionF (r) defined at (14) is concave, and moreoverlimr→0F
′(r) < 0.

The statements in Theorems 2 and 3 about the decay ofC2(n) immediately follow from Lemma 5, since
we havenF (0)−(ℓ/k)F ′(0) ≥ nF (ℓ/k) ≥

(
ℓ
i

)(
ℓ
j

)
nH(ρ̂r,c,d,r,c,d), and one readily verifies thatF (0) = h(ρ)

in the saddle-point case andh(0) in the polar case. It remains only to justify the globalO-bounds at the
beginning of Theorems 2 and 3 for those(r, c, d) outside the rectangleR0 given in Lemma 3, which the
following achieves.
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Lemma 6 WithF as defined at (14) andg as at (10), for all sufficiently smallr0 there existsC such that
(
kr

krc

)(
kr

krd

)
g(n, r, c, d) ≤ CnF (0)−(r0/2)F

′(0)

for all r > r0 and all (c, d) ∈ [0, 1].

The main tool in proving Lemma 6 is Lemma 5, although some workis required in proving uniformity in
(for example) cases where the saddle pointρ̂r,c,d is very close to the pole ats = −2.
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