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2Département d’Informatique, Université Libre de Bruxelles, CP 212, Boulevard du Triomphe, B-1050,

Bruxelles, Belgium

(e-mail: louchard@ulb.ac.be)
3Department of Mathematical Sciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

(e-mail: swagner@sun.ac.za)
4Department of Statistics, Purdue University, 150 North University Street, West Lafayette,

IN 47907–2067, USA

(e-mail: mdw@purdue.edu)

Received 14 March 2013; revised 22 March 2014; first published online 2 October 2014

Dedicated to the memory of Philippe Flajolet

We analyse the first-order asymptotic growth of

an =

∫ 1

0

n∏

j=1

4 sin2(πjx) dx.

The integer an appears as the main term in a weighted average of the number of orbits in a
particular quasihyperbolic automorphism of a 2n-torus, which has applications to ergodic
and analytic number theory. The combinatorial structure of an is also of interest, as the
‘signed’ number of ways in which 0 can be represented as the sum of ϵj j for −n ! j ! n
(with j ̸= 0), with ϵj ∈ {0, 1}. Our result answers a question of Thomas Ward (no relation
to the fourth author) and confirms a conjecture of Robert Israel and Steven Finch.
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1. Introduction and motivation

We analyse the precise first-order asymptotics of integer sequence A133871 from the On-

Line Encyclopedia of Integer Sequences [12]. The sequence (an) is defined by the definite

integral

an :=

∫ 1

0

n∏

j=1

4 sin2(πjx) dx, n = 1, 2, 3, . . . . (1.1)

The first few values of an are

(an)n"1 = (2, 4, 6, 10, 12, 20, 24, 34, 44, 64, . . . ).

Thomas Ward (no relation to the fourth author) introduced this sequence on OEIS in

2008, stating that [12]:

This quantity arises in some examples associated to the dynamical Mertens’ theorem for quasi-

hyperbolic toral automorphisms. The function being integrated to compute an vanishes on the set

of points in the Farey sequence of level n. I am particularly interested in knowing how large the

sequence is asymptotically.

In this paper, we answer Thomas Ward’s question about the asymptotics of an. Our

main result is an exact first-order asymptotic analysis of an. We heartily thank Thomas

Ward for explaining to us the motivation of the problem [20]. We explain this motivation

further in this section. (The origins of this problem can be traced back to at least 1969,

as explained below.)

Israel conjectured that

log(an2−n)

n
→ −0.3 . . . ,

or equivalently, log an ∼ (log(2) − 0.3 . . .)n (see [6]). Finch has written a short manu-

script [4] in which he gives the equivalent conjecture, without proof (see the top of Finch’s

page 3), that a
1/n
n ∼ 1.48 . . . ∼ 2e−0.29.... Our main result rigorously verifies the Israel–

Finch conjecture and sharpens it, to give an exact first-order asymptotic characterization.

Moreover, instead of a numerical approximation, we provide the exact values of the

constants in the asymptotics.

In the OEIS entry, Steven Finch also points out that ‘an = coefficient of xn(n+1)/2 in the

polynomial (−1)n
∏n

k=1(1 − xk)2, and is the maximal such coefficient as well’ [12]. Finch’s

observation about this equivalent representation can be seen, for instance, as follows.

Since 4 sin2(πjx) = (1 − e2πijx)(1 − e−2πijx), then the integrand of an is

n∏

j=1

(1 − e2πijx)(1 − e−2πijx).

Note that
∫ 1

0 e2πiℓx dx = 0 for all non-zero integers ℓ, and
∫ 1

0 e2πi0x dx = 1. So it follows

that, if we compute an by expanding
∏n

j=1(1 − e2πijx)(1 − e−2πijx) and then integrating,

only the terms in which the js sum to 0 will contribute. Moreover, if the integral of a term

is non-zero, it is either 1 or −1, depending on whether an even or odd number of js were

involved in the product.
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This observation leads to the combinatorial representation

an = [x0]
n∏

j=1

(1 − xj)(1 − x−j),

where [x0] denotes the constant coefficient (see Finch [4]). We can therefore think of an
combinatorially as the signed total number of (2n)-tuples (ϵ−n, . . . , ϵ−1, ϵ1, . . . , ϵn) ∈ {0, 1}2n

such that
∑

−n!j!n
j ̸=0

ϵjj = 0.

By ‘signed’ we are referring to a weighting scheme in which a (2n)-tuple

(ϵ−n, . . . , ϵ−1, ϵ1, . . . , ϵn) ∈ {0, 1}2n

provides a contribution of −1 to the signed total number if an odd number of ϵj are

non-zero (i.e., equal to 1), or provides a contribution of +1 to the signed total number

otherwise.

Example. When n = 4, exactly 18 of the 8-tuples have an even number of non-zero terms

(i.e., of ones),

(0, 0, 0, 0, 0, 0, 0, 0) (1, 1, 1, 1, 1, 1, 1, 1)

(0, 0, 0, 1, 1, 0, 0, 0) (0, 0, 1, 0, 0, 1, 0, 0) (0, 1, 0, 0, 0, 0, 1, 0) (1, 0, 0, 0, 0, 0, 0, 1)

(0, 0, 1, 1, 1, 1, 0, 0) (0, 1, 0, 1, 1, 0, 1, 0) (0, 1, 1, 0, 0, 1, 1, 0) (1, 0, 0, 1, 1, 0, 0, 1)

(1, 0, 1, 0, 0, 1, 0, 1) (1, 1, 0, 0, 0, 0, 1, 1) (0, 1, 1, 0, 1, 0, 0, 1) (1, 0, 0, 1, 0, 1, 1, 0)

(0, 1, 1, 1, 1, 1, 1, 0) (1, 0, 1, 1, 1, 1, 0, 1) (1, 1, 0, 1, 1, 0, 1, 1) (1, 1, 1, 0, 0, 1, 1, 1)

and exactly 8 of the 8-tuples have an odd number of non-zero terms (i.e., of ones),

(0, 0, 1, 1, 0, 0, 1, 0) (0, 1, 0, 0, 1, 1, 0, 0) (0, 1, 0, 1, 0, 0, 0, 1) (1, 0, 0, 0, 1, 0, 1, 0)

(0, 1, 1, 1, 0, 1, 0, 1) (1, 0, 1, 0, 1, 1, 1, 0) (1, 0, 1, 1, 0, 0, 1, 1) (1, 1, 0, 0, 1, 1, 0, 1).

Thus a4 = 18(+1) + 8(−1) = 10.

The number of ways in which 0 can be written in an unweighted fashion as
∑n

j=−n ϵjj

is a well-understood quantity (see Clark [2], Entringer [3], Louchard and Prodinger [9],

van Lint [18], and others). To the best of our knowledge, our derivation is the first result

in which the contributions are signed according to the parity of the number of non-zero

terms.

Paul Hanna also has a note in the OEIS entry [12] that an equals the sum of the squares

of the coefficients in the polynomial
∏n

k=1(1 − xk).

From a topological/dynamical perspective, the quantity an is the asymptotic coefficient

in the weighted sum of the orbital numbers of a certain toral automorphism. The study

of this automorphism is motivated by the search for a topological analogue to Mertens’

prime number theorem. There is a strong structural similarity between the distribution
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of the prime integers and that of the orbits of an automorphism acting on an n-torus

Tn = S1 × · · · × S1. Specifically, the classical Mertens’ theorem gives

∏

p!N

(
1

1 − 1/p

)
∼ log(N),

and we have the analogous hyperbolic toral diffeomorphism result

MT (N) :=
∑

|τ|!N

1

eh|τ| ∼ log(N), (1.2)

where each τ = {x, T (x), . . . , T k(x) = x} denotes a closed orbit of length k (here k and |τ|
are both used interchangeably to represent the length), and h represents the topological

entropy. Noorani [11] showed that when T is merely an ergodic toral automorphism (such

an automorphism is said to quasihyperbolic), we have

MT (N) = m log(N) + C1 + o(1) (1.3)

for some positive integer m, where an is precisely the m in (1.3) for a specific automorphism,

which we will introduce in the next paragraph. Jaidee, Stevens and Ward [7] improved

Noorani’s estimate and also showed that the constant m is given by

m =

∫

X

n∏

j=1

4 sin2(πxj) dx1 · · · dxj , (1.4)

where X is found as follows. We first find all eigenvalues of modulus 1 of the matrix A

defining the automorphism T , and then, if these eigenvalues are e±2πiθ1 , . . . , e±2πiθt , we let

X ⊂ Td denote the closure of the set {(kθ1, . . . , kθt) : k ∈ Z} in Td.

The particular toral automorphism that gives rise to our an has been of interest since

at least 1969; see Walters’ analysis [19]. Walters introduced the automorphism given by

the matrix

A =

⎛

⎜⎜⎝

0 0 0 −1

1 0 0 8

0 1 0 −6

0 0 1 8

⎞

⎟⎟⎠

on the 4-torus T4 = S1 × S1 × S1 × S1 for an example of an affine mapping between

compact connected metric abelian groups, for which the mapping commutes only with

continuous maps that are also affine. For this matrix A, the eigenvalues are

2 +
√

3 ±
√

6 + 4
√

3 and 2 −
√

3 ± i

√
4
√

3 − 6.

The latter two eigenvalues, 2 −
√

3 ± i
√

4
√

3 − 6, each have modulus 1. Thus, the θ1 from

the previous paragraph is

θ1 =
1

2π
arctan

(
2 −

√
3√

−6 + 4
√

3

)
.

Noorani [11] further cited A as an example of a strictly quasi-hyperbolic automorphism

on the torus. Jaidee, Stevens and Ward [7] later considered A as their example of a toral
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automorphism whose asymptotic coefficient m = 6 exceeded 2t = 2 (where t = 1 since

A has 2 = 2t eigenvalues on the unit circle), and in the same work used A to define

the automorphism A1 ⊕ A2 ⊕ · · · ⊕ An on the 4n-torus T4n. This is the defining context

of our an: it is precisely the coefficient m of log(N) in (1.3), in the asymptotic growth

of MT (n), when MT is defined as in (1.2) with T4n the torus under consideration and

A1 ⊕ · · · ⊕ An the quasihyperbolic automorphism. This choice of automorphisms and tori

gives a particularly nice form of (1.4), in that all the xj are the same variable and the

region of integration X is just [0, 1].

2. Main result

Our goal is to determine the asymptotic growth of the quantity

an =

∫ 1

0

n∏

j=1

4 sin2(πjx) dx.

Our main result is a precise first-order characterization of the asymptotic growth of an.

Theorem 2.1. Let an be defined as above, and let G(x) be the function defined as

G(x) :=

∫ 1

0
log(sin(πxt)) dt.

Then there is a unique point x0 = 0.7912265710 . . . on (0, 1) at which G attains its maximum

maxx∈(0,1) G(x) = −0.4945295654 . . . on the unit interval (0, 1). Furthermore, if r and C

denote the constants

r := e2G(x0) = 0.3719264606 . . . , and C :=
4 sin(πx0)

x0

√
π

−G′′(x0)
= 2.405745839 . . . ,

then the first-order asymptotic growth of an is C(4r)nn−1/2, that is,

lim
n→∞

an
C(4r)nn−1/2

= 1.

We also prove a pair of twin theorems, stated below. Theorem 2.1 follows directly from

these two theorems.

Theorem 2.2. Let C, r be defined as in Theorem 2.1. Then

lim
n→∞

∫
[
0,

1
n

]
∪
[
n−1
n ,1

]
n∏

j=1

sin2(πjx) dx

Crnn−1/2
= 1.

Theorem 2.3. Let r be defined as in Theorem 2.1. Then

∫ n−1
n

1
n

n∏

j=1

sin2(πjx) dx = O(ρn),

for some ρ < r.
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Recall from equation (1.1) that an is defined as

an :=

∫ 1

0

n∏

j=1

4 sin2(πjx) dx, n = 1, 2, 3, . . . .

Theorem 2.2 precisely characterizes the dominant contribution to the integral that

defines an; this dominant contribution comes from integrating over the region [0, 1/n] ∪
[(n − 1)/n, 1]. Theorem 2.3 says that the integral over the middle integral [1/n, (n − 1)/n] is

(comparatively) negligible. The proofs of Theorems 2.2 and 2.3 will occupy the remainder

of the paper. The fact that the majority of the contribution to the integral comes from

x ∈ [0, 1/n] ∪ [(n − 1)/n, 1] is illustrated in Figure 1.

3. Derivation of asymptotics: Proof of Theorem 2.2

We first note that because sin2(πjx) is symmetric about x = 1/2, then by a change of

variables, we can express
∫
[
0,

1
n

]
∪
[
n−1
n ,1

]
n∏

j=1

sin2(πjx) dx

as

2

n

∫ 1

0

n∏

j=1

sin2

(
πj

n
x

)
dx.

We can write this new integrand

n∏

j=1

sin2

(
πj

n
x

)

as an exponential function, which will allow us to use Laplace’s method.

Lemma 3.1. Let

G(x) :=

∫ 1

0
log(sin(πxt)) dt,

and let

hn(x) :=

∏n
j=1 sin2

(
πj
n x

)

2ne2nG(x)
for 0 < x ! 1.

We can (continuously) extend the domain of hn(x) to [0, 1] by defining hn(0) := limx→0+ hn(x).

Then we have

hn(x) =
sin(πx)

x
+ O

(
1

n

)
,

and this holds uniformly for x ∈ [0, 1].

We postpone the proof of Lemma 3.1 for the moment, in order to show the connection

to Theorem 2.2. We first state Laplace’s method.
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Figure 1. (Colour online) Plot of the integrand
∏n

j=1 4 sin2(πjx) of an :=
∫ 1

0

∏n
j=1 4 sin2(πjx) dx for

n = 5, 10, 15.

Theorem 3.2. (Laplace’s method: an easy extension of the usual version, e.g., as given in [1]

or in Appendix B.6 of [5].) Let g : [a, b] → R be twice-differentiable and concave on [a, b],

and suppose there is a unique point x0 ∈ [a, b] such that g(x0) = maxx∈[a,b] g(x). Let (fn)

be a sequence of functions on [a, b] which are uniformly bounded over all n, continuous on

some common interval [x0 − ϵ, x0 + ϵ] ⊂ [a, b], and uniformly convergent on [x0 − ϵ, x0 + ϵ]

to some f : [x0 − ϵ, x0 + ϵ] → R. Then

lim
n→∞

∫ b

a fn(x)eng(x) dx

f(x0)eng(x0)
√

2π
n(−g′′(x0))

= 1.
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Figure 2. (Colour online) Plot of G(x) :=

∫ 1

0
log(sin(πxt)) dt for x ∈ (0, 1).

We note that G(x) is concave on (0, 1) since

G′′(x) = −
∫ 1

0

π2t2

sin2(πxt)
dt < 0,

and it has the unique critical point x0 = 0.7912265710 . . . , so that G(x0) > G(x) for all

x ∈ (0, 1) with x ̸= x0. The function G(x) is depicted in Figure 2.

Now we apply Laplace’s method with

fn := hn, f(x0) :=
sin(πx0)

x0
, [a, b] := [0, 1], g := 2G.

We obtain

lim
n→∞

∫ 1
0 hn(x)e2nG(x) dx

sin(πx0)
x0

e2nG(x0)
√

π
n(−G′′(x0))

= 1. (3.1)

By definition, we have r := e2G(x0) and

C :=
4 sin(πx0)

x0

√
π

−G′′(x0)
.

Also
∫
[
0,

1
n

]
∪
[
n−1
n ,1

]
n∏

j=1

sin2(πjx) dx =
2

n

∫ 1

0

n∏

j=1

sin2

(
πj

n
x

)
dx = 4

∫ 1

0
hn(x)e2nG(x) dx.

Thus equation (3.1) becomes

lim
n→∞

∫
[
0,

1
n

]
∪
[
n−1
n ,1

]
n∏

j=1

sin2(πjx) dx

Crnn−1/2
= 1,

which is exactly the statement of Theorem 2.2.

So all that remains is to prove Lemma 3.1. Consider the function

u(t) = log
sin(πt)

πt(1 − t)
,
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with u(0) = u(1) = 0. This function is continuous and infinitely differentiable on [0, 1], so

all its derivatives are also bounded on [0, 1]. The Euler–Maclaurin formula yields

n∑

j=0

u

(
jx

n

)
=

∫ n

0
u

(
xt

n

)
dt +

u(0) + u(x)

2
+

x(u′(x) − u′(0))

12n

− x2

2n2

∫ n

0
B2({t})u′′

(
xt

n

)
dt,

where B2(y) = y2 − y + 1/6 is the second Bernoulli polynomial. Since the integrand in the

last integral is bounded (uniformly in x), we get

n∑

j=1

u

(
jx

n

)
=

∫ n

0
u

(
xt

n

)
dt +

u(x)

2
+ O

(
1

n

)
,

using also the fact that u(0) = 0. Now we have

log hn(x)

= 2
n∑

j=1

u

(
jx

n

)
− log(2n) − 2nG(x) + 2

n∑

j=1

log

(
πjx

n

(
1 − jx

n

))

= 2n

∫ 1

0
u(xt) dt + u(x) − log(2n) − 2nG(x) + 2

n∑

j=1

log

(
πjx

n

(
1 − jx

n

))
+ O

(
1

n

)

= −2n

∫ 1

0
log(πxt(1 − xt)) dt + u(x) − log(2n) + 2

n∑

j=1

log

(
πjx

n

(
1 − jx

n

))
+ O

(
1

n

)

= 4n +
2n

x
(1 − x) log(1 − x) − 2n log(πx) + u(x) − log(2n) + 2n log(πx/n) + 2 log(n!)

+ 2 log
n∏

j=1

(
1 − jx

n

)
+ O

(
1

n

)
.

Now we use Stirling’s approximation and simplify to get

log hn(x) = log
sin(πx)

x
+ 2n +

(
2n

x
− 2n − 1

)
log(1 − x) + 2 log

n∏

j=1

(
1 − jx

n

)
+ O

(
1

n

)
.

(3.2)

Next, note that

n∏

j=1

(
1 − jx

n

)
=

(
x

n

)n n∏

j=1

(
n

x
− j

)
=

(
x

n

)n Γ(n/x)

Γ(n/x − n)
.

Since n/x goes to infinity regardless of the value of x (unlike n/x − n, which we will

discuss later), we can again apply Stirling’s approximation to find

log
n∏

j=1

(
1 − jx

n

)
=

(
n

x
− n

)
log(n/x) − n

x
+

1

2
log

(
2πx

n

)
− log Γ

(
n

x
− n

)
+ O

(
1

n

)
.
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Plugging this into (3.2) and simplifying once again yields

log hn(x) = log
sin(πx)

x
+

(
2n

x
− 2n − 1

)
log

(
n

x
− n

)
− 2

(
n

x
− n

)
+ log(2π)

− 2 log Γ

(
n

x
− n

)
+ O

(
1

n

)
, (3.3)

and this estimate is still uniform in x. Now define another function γ by

γ(t) = tte−tΓ(t)−1
√

2π/t.

This function is continuous on [0,∞) with γ(0) = 0 and γ(t) = 1 + O(1/t) as t → ∞ by

Stirling’s formula. Now we can write (3.3) in the more compact form

log hn(x) = log
sin(πx)

x
+ 2 log γ

(
n

x
− n

)
+ O

(
1

n

)

or

hn(x) =
sin(πx)

x
γ

(
n

x
− n

)2(
1 + O

(
1

n

))
=

sin(πx)

x
γ

(
n

x
− n

)2

+ O

(
1

n

)
,

and thus

hn(x) − sin(πx)

x
=

sin(πx)

x

(
γ

(
n

x
− n

)2

− 1

)
+ O

(
1

n

)
.

All this is still uniform in x. If x is very close to 1, say x " n/(n + 1) (so that n/x − n ! 1),

then sin(πx)/x = O(1/n), while the second factor on the right-hand side is bounded. If,

on the other hand, x ! n/(n + 1), then γ(n/x − n)2 − 1 = O((n/x − n)−1) and thus

sin(πx)

x

(
γ

(
n

x
− n

)2

− 1

)
= O

(
sin(πx)

(1 − x)n

)
= O

(
1

n

)
.

In either case, we have the desired estimate, which completes our proof.

Remark. If we include further terms in the Euler–Maclaurin formula and Stirling’s

approximation, we find that

hn(x) =
sin(πx)

x
+

π cos(πx)

6n
+ O

(
1

n2

)
,

uniformly on compact subsets of [0, 1), in particular on an interval around x0. This also

makes it possible to obtain a more precise asymptotic formula for an:

an =
(4r)n√

n

(
C +

C1

n
+ O

(
1

n2

))
,
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where r and C are as in Theorem 2.1 and

C1 =

√
π sin(πx0)

12x3
0(−G′′(x0))7/2

(24G′′(x0)
2 − 12π2x2

0G
′′(x0)

2 + 12x0G
′′(x0)G

′′′(x0)

+ 5x2
0G

′′′(x0)
2 − 3x2

0G
′′(x0)G

(4)(x0))

+
π3/2 cos(πx0)(6G′′(x0) + 2x2

0G
′′(x0)2 + 3x0G

′′′(x0))

3x2
0(−G′′(x0))5/2

= 0.0262451044 . . . .

In principle, one can extend the asymptotic formula further to include arbitrarily many

terms.

4. Error bounding: Proof of Theorem 2.3

We now begin the proof of Theorem 2.3, which says that

∫ (n−1)/n

1/n

n∏

j=1

sin2(πjx) dx = O(ρn) for some ρ < r.

The following result will imply Theorem 2.3 immediately.

Theorem 4.1. Let r be defined as in Theorem 2.1. Then there exist C < log r and N ∈ N
such that for all n " N we have

1

n

n∑

j=1

log(sin2(πjx)) ! C for all x ∈ [1/n, (n − 1)/n].

To prove Theorem 4.1, we will approximate each x ∈ [1/n, (n − 1)/n] with a rational.

Dirichlet’s theorem provides exactly the sharp approximation that we require.

Theorem 4.2 (Dirichlet: see [16]). Let x ∈ R, n ∈ N. Then there exist coprime pn,x, qn,x ∈
Z, where 1 ! qn,x ! n, such that

∣∣∣∣x − pn,x
qn,x

∣∣∣∣ ! 1

qn,x(n + 1)
. (4.1)

To begin, we fix n ∈ N and x ∈ [1/n, (n − 1)/n]. Let coprime pn,x, qn,x ∈ Z be as described

in Theorem 4.2. Without loss of generality,

x " pn,x
qn,x

,

because otherwise we can (instead) use the values

1 − x and
qn,x − pn,x

qn,x
,
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since sin2(πjt) is the same for both x and 1 − x, and since the bound in Theorem 4.2 will

still hold. We then set

y := x − pn,x
qn,x

,

so that we have

x =
pn,x
qn,x

+ y, where 0 ! y ! 1

qn,x(n + 1)
. (4.2)

Henceforth we suppress the (n, x) subscript, and simply write p := pn,x and q := qn,x
(but we must keep in mind that these values actually depend on n and x).

Now, our overall goal is to bound the quantity

L :=
1

n

n∑

j=1

log(sin2(πjx)),

and we are approximating x with the rational p/q. So it makes sense to partition the

values of j = 1 . . . n by their equivalence classes modulo q. If we define k := ⌈n/q⌉ − 1

and s := n mod q, then we have

L =
1

n

k−1∑

m=0

q∑

ℓ=1

log

(
sin2

(
π(mq + ℓ)

(
p

q
+ y

)))
+

1

n

s∑

ℓ=1

log

(
sin2

(
π(kq + ℓ)

(
p

q
+ y

)))

=
1

n

k−1∑

m=0

q∑

ℓ=1

log

(
sin2

(
π

(
ℓp

q
+ (mq + ℓ)y

)))
+

1

n

s∑

ℓ=1

log

(
sin2

(
π

(
ℓp

q
+ (kq + ℓ)y

)))
.

(4.3)

This is the basic paradigm under which we will operate for the remainder of our proof.

We now break the argument into two cases, depending on the relative sizes of q and n.

Case 1: q ! √
n. The basic idea here will be to form Riemann sums at each ℓp/q. Dropping

the remainder term in (4.3) (which we can do since log(sin2(·)) is always non-positive),

yields

L ! 1

n

q∑

ℓ=1

k−1∑

m=0

log

(
sin2

(
π

(
ℓp

q
+ (mq + ℓ)y

)))
(4.4)

=
1

nqy

q∑

ℓ=1

[
qy

k−1∑

m=0

log

(
sin2

(
π

(
ℓp

q
+ ℓy + mqy

)))]
. (4.5)

We note that the inner bracketed terms (4.5) look like Riemann sums. And if we remove,

for fixed ℓ, half the 0th term and half the (k − 1)st, what remains will be a trapezoidal

sum for
∫ ℓy+(k−1)qy

ℓy

log

(
sin2

(
π

(
ℓp

q
+ t

)))
dt.

The trapezoidal sum does not exceed the value of the integral, since the integrand is

concave. And since the integrand is non-positive, we can shorten the region of integrating
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without increasing the value. Thus,

L ! 1

nqy

q∑

ℓ=1

∫ ℓy+(k−1)qy

ℓy

log

(
sin2

(
π

(
ℓp

q
+ t

)))
dt (4.6)

! 1

nqy

q∑

ℓ=1

∫ (k−1)qy

qy

log

(
sin2

(
π

(
ℓp

q
+ t

)))
dt. (4.7)

Now, since p and q are relatively prime, the quantity ℓp/q mod 1 will range over all values
{

1

q
,
2

q
, . . . , 1

}

as ℓ ranges from 1 to q. Then, by the identity

q∏

j=1

sin

(
π

(
j

q
+ t

))
= − sin(πqt)

2q−1
, (4.8)

inequality (4.7) implies

L ! 1

nqy

∫ (k−1)qy

qy

log

(
sin2(πqt)

4q−1

)
dt

=
(k − 2)(q − 1)

n
log

(
1

4

)
+

1

nq2y

∫ (k−1)q2y

q2y

log(sin2(πt)) dt

=
k − 2

n

[
(q − 1) log

(
1

4

)
+

1

(k − 2)q2y

∫ (k−1)q2y

q2y

log(sin2(πt)) dt

]
. (4.9)

And since k = ⌈n/q⌉ − 1 and q ! √
n, we have

k − 2

n
=

1

q
+ O(n−1) =

1

q
(1 + O(n−1/2)).

Plugging that into (4.9), we obtain

L !
(
1 + O(n−1/2)

)[q − 1

q
log

(
1

4

)
+

1

q

1

(k − 2)q2y

∫ (k−1)q2y

q2y

log(sin2(πt)) dt

]
. (4.10)

From here our strategy will be to transform the integral on the right-hand side of (4.10)

into a value of the function 2G(x) =
∫ 1

0 log(sin2(πxt)) dt. We note that

1

(k − 2)q2y

∫ (k−1)q2y

q2y

log(sin2(πt)) dt

is an average-value integral, whose integrand log(sin2(πt)) is concave with a unique max-

imum at t = 1/2. So if (k − 1)q2y < 1/8 (say), then since 1/8 < 1/2 and log(sin2(π/8)) <

log(1/4), we have

L !
(
1 + O(n−1/2)

)[q − 1

q
log

(
1

4

)
+

1

q
log

(
sin2

(
π

8

))]
!

(
1 + O(n−1/2)

)
log

(
1

4

)
.



208 J. Gaither, G. Louchard, S. Wagner and M. D. Ward

Since 1/4 < r = 0.3719264606 . . . , and thus

log

(
1

4

)
= −1.386294361 · · · < log r = −0.9890591305 . . . ,

we are in this case done. So we may assume that (k − 1)q2y " 1/8. In this case we can

extend the lower limit of the integral in (4.10) to t = 0 for the price of an O(n−1/4) term.

For we have

1

(k − 2)q2y

∫ q2y

0
log(sin2(πt)) dt =

[
1

(k − 2)
√

q2y

]
1√
q2y

∫ q2y

0
log(sin2(πt)) dt

=
1

(k − 2)
√
q2y

O(1)

= O

(√
8(k − 1)

(k − 2)

)

= O(n−1/4), (4.11)

where the O(1) bound in (4.11) is easily verified through L’Hôpital’s rule, and the O(n−1/4)

bound follows from the fact that k = ⌊n/q⌋ where q ! √
n.

Then, operating on the integral in (4.10), we have

1

(k − 2)q2y

∫ (k−1)q2y

q2y

log(sin2(πt)) dt =
1

(k − 2)q2y

∫ (k−1)q2y

0
log(sin2(πt)) dt + O(n−1/4)

! 1

(k − 1)q2y

∫ (k−1)q2y

0
log(sin2(πt)) dt + O(n−1/4)

=

∫ 1

0
log(sin2(π(k − 1)q2yt)) dt + O(n−1/4)

= 2G((k − 1)q2y) + O(n−1/4) ! log r + O(n−1/4).

Plugging into (4.10), we obtain

L !
(
1 + O(n−1/2)

)[q − 1

q
log

(
1

4

)
+

1

q
(log r + O(n−1/4))

]

!
(
1 + O(n−1/4)

)[ log(1/4) + log r

2

]
.

We note here that q cannot be 1, since for x ∈ [1/n, (n − 1)/n], the distance to the nearest

integer is at least 1/n > 1/(n + 1), contradicting (4.1). Thus q " 2. Since log(1/4) < log r,

this completes our consideration of the case when q ! √
n.

Case 2: q >
√
n. In Case 1 we took Riemann sums at each i/q. In this case we will let the

values 0, 1/q, . . . (q − 1)/q form a Riemann sum that ranges over all of [0, 1]. We begin by
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referring back to the canonical representation of (4.3),

L =
1

n

k−1∑

m=0

q∑

ℓ=1

log

(
sin2

(
π

(
ℓp

q
+ (mq + ℓ)y

)))

+
1

n

s∑

ℓ=1

log

(
sin2

(
π

(
ℓp

q
+ (kq + ℓ)y

)))
, (4.12)

where s = n mod q, and in Case 1 we discarded the right-hand remainder sum at the very

beginning. We will not be able to do so in this case.

We summarize our approach to Case 2 in the following proposition.

Proposition 4.3. For fixed m ! k and fixed i, 1 ! i ! q, there is at most one ℓ, 1 ! ℓ ! q,

such that
(
ℓp

q
+ (mq + ℓ)y

)
mod 1 ∈

[
i − 1

q
,
i

q

)
.

Furthermore, if m < k, there is exactly one such ℓ.

Given m < k and ℓ such that
(
ℓp

q
+ (mq + ℓ)y

)
mod 1 ∈

[
i − 1

q
,
i

q

)
,

we define

zm,i :=

(
ℓp

q
+ (mq + ℓ)y

)
mod 1.

The content of this proposition follows immediately from the Dirichlet bound of (4.2)

and the relative primality of p and q.

Now, for fixed m, the points zm,1, . . . , zm,q will not be equidistant. However, by the

concavity and symmetry of the function log(sin2(π(·))), we will always have either

log(sin2(πzm,i)) ! log

(
sin2

(
πi

q

))

or

log(sin2(πzm,i)) ! log

(
sin2

(
π(i − 1)

q

))
,

depending on whether i/q < 1/2 or i/q > 1/2. (We will not have such a bound in the case

where (i − 1)/q < 1/2 < i/2, but the midpoint takes care of itself, since log(sin2(π/2)) = 0.)

So we have

1

n

k−1∑

m=0

q∑

ℓ=1

log

(
sin2

(
π

(
ℓp

q
+ (mq + ℓ)y

)))
! 1

n

k−1∑

m=0

q−1∑

i=1

log

(
sin2

(
πi

q

))

=
k

n
log

(
q2

4q−1

)
,
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where the final equality follows from a variant on the sine-identity (4.8). Plugging this

inequality into our base-expression (4.12), we obtain

L ! k

n
log

(
q2

4q−1

)
+

1

n

s∑

ℓ=1

log

(
sin2

(
π

(
ℓp

q
+ (kq + ℓ)y

)))
. (4.13)

We note that we still have a strange remainder sum lurking at the end of (4.13). We will

handle this remainder sum in two separate cases.

Case 2a: s/q ∈ [1/2, 3/5]. This is the hard case; Case 2b will follow very easily from it. We

begin by noting that by Proposition 4.3, each of the values (ℓp/q + (kq + ℓ)y) mod 1 will

lie in a different interval [(i − 1)/q, i/q). The difficulty here is that since ℓ will only range

from 1 to s, not all of these intervals will contain such a point. To handle this problem,

we rename and order the set {(ℓp/q + (kq + ℓ)y) mod 1 : ℓ = 1 . . . s} as {β1, β2, . . . , βs},
where the points are ordered by increasing distance from the point x = 1/2. To avoid

considering separate cases for odd and even q, we ignore the first point β1. But we must

have

log(sin2(πβ2j)) ! log

(
sin2

(
π

(
1

2
− j − 1

q

)))
, and identically for β2j+1, (4.14)

for j = 1 . . . ⌊s/2⌋. The underlying logic here is that the second and third points can be no

closer to 1/2 than 0, the fourth and fifth can be no closer than 1/q, and so on, since they

all lie in separate intervals [(i − 1)/q, i/q] and are ordered by their distances from 1/2.

So we have the global approximation

s∑

j=1

log(sin2(πβℓ)) ! 2

⌊s/2⌋∑

j=1

log

(
sin2

(
π

(
1

2
− j − 1

q

)))
.

However, it will be necessary to consider how much error we accumulate in carrying it

out. The following lemma will give us a means of bounding this error from below.

Lemma 4.4. Under the hypotheses of Case 2a, there is some positive integer N such that

whenever n > N, at least q/12 of the points {(ℓp/q + ℓy + kqy) mod 1}sℓ=1 lie in the region

A = [0, 1/10] ∪ [9/10, 1].

Proof. Asymptotically, q/5 of the intervals
{[

ℓp mod q

q
,
(ℓp + 1) mod q

q

]}q

ℓ=1

will lie strictly within A. So we can find N such that at least q/6 of these intervals lie in

A whenever n > N . Now we know that for every i, 1 ! i ! q such that [(i − 1)/q, i/q] ⊂
A, there is a unique ℓi, 1 ! ℓi ! q such that ℓip mod q = i − 1. If it happens that this

ℓi > s, then since s " q/2 by the hypotheses of Case 2a, we must have q − ℓi ! s. Then

(q − ℓi)p mod q = q − i + 1, and since i/q ∈ A we must have q − i/q ∈ A also, by the

symmetry of A. It is possible that (q − i + 1)/q will not be in A despite (q − i)/q’s being in

there, but this can happen for at most one i; this contingency is therefore asymptotically
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negligible. So asymptotically at least half the ℓ ! q such that

[
ℓp mod q

q
,
(ℓp + 1) mod q

q

]
⊂ A

will also satisfy ℓ ! s; so there will be at least (1/2)(q/6) = q/12 such ℓ.

This lemma says that when we make the s − 1 substitutions described in (4.14), at least

q/12 of the βj we substitute for will lie in A. And since in each case our substituted value

will be 1/2 − (j − 1)/q for some 1 ! j ! ⌊s/2⌋, for at least q/12 points, we will have an

error of at least

log

(
sin2( π

10 )

sin2( π5 )

)
.

We then have

1

n

s∑

ℓ=1

log

(
sin2

(
π

(
ℓp

q
+ (kq + ℓ)y

)))
(4.15)

! 2

n

⌊s/2⌋∑

ℓ=1

log

(
sin2

(
π

(
1

2
− ℓ − 1

q

)))
+

q

12n
log

(
sin2( π

10 )

sin2( π5 )

)

! 2q

n

∫ 1
2

1
2 − s−1

2q +
1
q

log(sin2(πt)) dt +
q

12n
log

(
sin2( π

10 )

sin2( π5 )

)

=
2q

n

∫ 1
2

1
2 − s

2q

log(sin2(πt)) dt +
q

12n
log

(
sin2( π

10 )

sin2( π5 )

)
+ O

(
log n

n

)
, (4.16)

where we get the second inequality by removing half the first and last terms to make a

trapezoid sum. Plugging (4.15) into (4.13), we obtain

L ! k

n
log

(
q2

4q−1

)
+

2q

n

∫ 1
2

1
2 − s

2q

log(sin2(πt)) dt +
q

12n
log

(
sin2( π

10 )

sin2( π5 )

)
+ O

(
log n

n

)

=
2k(q − 1)

n
log

(
1

2

)
+

2q

n

∫ 1
2

1
2 − s

2q

log(sin2(πt)) dt +
q

12n
log

(
sin2( π

10 )

sin2( π5 )

)
+ O

(
log n√

n

)
.

(4.17)

Now, since

log

(
1

2

)
=

∫ 1
2

0
log(sin2(πt)) dt,



212 J. Gaither, G. Louchard, S. Wagner and M. D. Ward

by symmetry of log(sin2(πt)) about t = 1/2 we can write

2q

n
log

(
1

2

)
+

2q

n

∫ 1
2

1
2 − s

2q

log(sin2(πt)) dt =
2q

n

∫ 1
2 +

s
2q

0
log(sin2(πt)) dt

=
2q

n

1
2 + s

2q
1
2 + s

2q

∫ 1
2 +

s
2q

0
log(sin2(πt)) dt

=
q + s

n
· 2G

(
1

2
+

s

2q

)
! q + s

n
log r.

Plugging into (4.17), we obtain

L ! 2k(q − 1)

n
log

(
1

2

)
− 2q

n
log

(
1

2

)
+

q + s

n
log r +

q

12n
log

(
sin2( π

10 )

sin2( π5 )

)
+ O

(
log n√

n

)

! 2(k − 1)q

n
log

(
1

2

)
+

q + s

n
log r +

q + s

24n
log

(
sin2( π

10 )

sin2( π5 )

)
+ O

(
log n√

n

)

=
(k − 1)q

n
log

(
1

4

)
+

q + s

n

(
log r +

1

24
log

(
sin2( π

10 )

sin2( π5 )

))
+ O

(
log n√

n

)

! (k − 1)q + q + s

n
max

(
log

(
1

4

)
, log r +

1

24
log

(
sin2( π

10 )

sin2( π5 )

))
+ O

(
log n√

n

)
.

Since (k − 1)q + q + s = kq + s = n and both constants inside the maximum are strictly

less than log r, this concludes our consideration of Case 2a.

Case 2b: s/q /∈ [1/2, 3/5]. In this case we follow the same procedure as in Case 2a, but

do not have to trouble ourselves about the error accumulated when we shift our βi. We

pick up at (4.17) with the q/(12n) bit removed:

L ! 2k(q − 1)

n
log

(
1

2

)
+

2q

n

∫ 1
2

1
2 − s

2q

log(sin2(πt)) dt + O

(
log n√

n

)

=
(k − 1)q

n
log

(
1

4

)
+

q + s

n
· 2G

(
1

2
+

s

2q

)
+ O

(
log n√

n

)

! (k − 1)q

n
log

(
1

4

)
+

q + s

n
·
[

sup
t/∈

[
3
4 ,

4
5

] 2G(t)

]
+ O

(
log n√

n

)

! (k − 1)q + q + s

n
max

(
log

(
1

4

)
, sup
t/∈

[
3
4 ,

4
5

] 2G(t)

)
+ O

(
log n√

n

)
.

Again, we are done since both log(1/4) and the sup are fixed constants < log r, as in

the previous case. This concludes our consideration of Case 2b, proving Theorem 4.1.

Theorem 2.3 immediately follows, and we are done.
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5. Final remarks

Shaun Stevens recently asked [17] how fast or slow the asymptotic growth of

∫ 1

0

n∏

j=1

4 sin2(πbjx) dx

can be, for general bj (we have analysed the bj = j case). He conjectured that the fastest

growth is for bj = 1 (which, as he notes, gives growth rate 22n/
√
πn, using Stirling’s

approximation). This is indeed true: to prove it, we require a version of the rearrangement

inequality for integrals. For a measurable function f : R → [0,∞), the symmetric decreasing

rearrangement f∗ is the symmetric decreasing function whose level sets have the exact same

size: for A ⊆ R, let A∗ be the interval (−λ(A)/2, λ(A)/2), where λ denotes the Lebesgue

measure. Moreover, set Lf(t) = {y : f(y) > t}, and let IL∗
f (t)

be the indicator function of

L∗
f(t). Then f∗ is given by

f∗(x) =

∫ ∞

0
IL∗

f (t)
(x) dt = sup{t : x ∈ L∗

f(t)}.

Note that Lf∗(t) = L∗
f(t) and thus λ(Lf∗ (t)) = λ(Lf(t)) for all t " 0. The following theorem

is a special case of [8, Theorem 3.8]. If f1, f2, . . . are L∞-functions from R to [0,∞) with

compact support, then

∫ ∞

−∞
f1(x)f2(x) · · · fn(x) dx !

∫ ∞

−∞
f∗

1(x)f∗
2(x) · · · f∗

n(x) dx.

It is not difficult to see that the symmetric decreasing rearrangement of f(x) = sin(πbx)2

on [0, 1] is f∗(x) = cos(πx)2 with support (−1/2, 1/2) for every positive integer b. So we

obtain

∫ 1

0

n∏

j=1

4 sin2(πbjx) dx ! 4n
∫ 1/2

−1/2
cos2n(πx) dx =

(
2n

n

)
,

with equality whenever the sequence b1, b2, . . . , bn is constant.

We are also eager to better understand the asymptotic growth of

an,k = [xk]
n∏

j=1

(1 − xj)(1 − x−j) =

∫ 1

0
e−2πikx

n∏

j=1

4 sin2(πjx) dx.

As discussed in the Introduction, the ans throughout this paper correspond to the case

k = 0. If k/n → a as n → ∞, then the proof of Theorem 2.1 can be modified easily to

prove that

an,k
an

=
an,k
an,0

→ cos(2πax0).

Things get more complicated when k is even larger, though, so that one probably needs

to distinguish different cases.
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