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Abstract

In 1946, Anton Kotzig introduced Kotzig’s Nim, also known as Modular Nim. This
impartial, combinatorial game is played by two players who take turns moving
around a circular board; each move is chosen from a common set of allowable
step sizes. We consider Kotzig’s Nim with two allowable step sizes. Although
Kotzig’s Nim is easy to learn and has been known for many decades, very few
theorems have been established. We prove a new primitive theorem about Kotzig’s
Nim. We also introduce a series of conjectures about periodicities in Kotzig’s Nim,
based on computational exploration of the game. We share a free database of our
computation, to entice others into further explorations of Kotzig’s Nim. We hope
the present paper sparks a revival of interest in this enticing game, for which the
winning strategy (in most cases) remains an enigma.

–Dedicated to the memory of Philippe Flajolet.

1. Introduction

Guy and Nowakowski’s Unsolved Problems in Combinatorial Games [3] asks, “A6

(17). Extend the analysis of Kotzig’s Nim (WW, 515–517). Is the game eventually

periodic in terms of the length of the circle for every finite move set? Analyze the

misère version of Kotzig’s Nim.”

Kotzig’s Nim [1], also known as Modular Nim [2], is a combinatorial game, i.e.,

it has two players who each have perfect information about the game and no chance

moves. Kotzig’s Nim is named after its inventor, Anton Kotzig [4]. The game is

played on a circle with n ∈ N locations, numbered clockwise from 0 through n− 1.

The same set of potential movesM = {m1, . . . ,mk} ∈ N
k is available to each player,

and thus the game is impartial. Players alternate moves, always choosing a move
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m ∈ M and moving exactly m units in a clockwise direction on the board. A player

cannot land on a previously occupied location. For this reason, the player places a

mark at the current board location immediately upon arrival, so that it will never

be revisited during the remainder of the game. The game ends when a player is

completely obstructed, i.e., a player discovers that every set of potential moves in

M leads to a previously occupied location; such an unfortunate player loses in the

normal style of play.

Kotzig’s Nim is a special case of the general problem known as Generalized Ge-

ography (http://en.wikipedia.org/wiki/Generalized_geography) which was

proved by Thomas J. Schaefer to be PSPACE-complete [5].

The two most recent discussions of Kotzig’s Nim [2, 1] have a difference in the

way that the game begins. In [1], the board is assumed to be empty at the start

of the game, so Player I begins the game by moving to any location at the start.

Without loss of generality (i.e., by a possible circular shift of the labels), Player I

begins the game at location 0. Subsequently, Player II moves to a location mi1 mod

n, and Player I moves to (mi1 + mi2) mod n, etc. In [2], location 0 is already

labeled at the start, so Player I begins by moving to a location mi1 mod n at the

start. Subsequently, Player II moves to (mi1 +mi2) mod n, etc. By pretending that

Player II visited location 0 at the start in [2], the two interpretations of the game

are seen to be exactly the same, except that the roles of the two players are reversed.

In other words, Player I in [1] corresponds precisely to Player II in [2].

With the normal play rule, P - and N -positions are defined in the standard re-

cursive way:

• A P -position is any position from which the P revious player can force a win.

An N position is any position from which the Next player who moves can

force a win. The sets of P - and N -positions are denoted, respectively, by P

and N .

• All terminal positions are P -positions.

• From every N -position, there is at least one move to a P -position.

• From every P -position, every move is to an N -position.

Since the roles of Players I and II are exactly reversed in [1] and [2], then the

N and P positions are exactly reversed too, i.e., the set of P positions in [1] are

exactly the set of N positions in [2].

We adhere to the conventions of [2], in particular, to the convention that

location 0 is already labeled at the start of the game, Player I moves to a location

mi1 mod n, etc.

The notational convention of [2] is Γ = (m1, . . . ,mk;n) ∈ N or ∈ P , if, respec-

tively, the first or second player can force a win from the start of a game of Kotzig’s
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Nim with move set M = {m1, . . . ,mk} and board size n. We simplify this notation

slightly (dropping the equals sign), by writing Γ(m1, . . . ,mk;n) ∈ N or ∈ P .

2. An Example

As an example of play in Kotzig’s Nim, we consider the game with move set M =

{1, 2} and n = 7. This example is discussed on page 516 of [1], where the solution

is given as a table. Instead, we present the solution for this example as a tree.

The first player can move from position 0 to either position 1 or position 2. If

the first player moves to position 1, then the game is finished after a total of four

moves. If the first player moves to position 2, then the game is finished after a total

of six moves. In either case, the second player has a winning strategy. The tree

associated with the game play for this example is displayed in Figure 1. For ease

of interpretation, we use solid lines for the first player’s moves and dashed lines for

the second player’s moves. We indicate when the losing player’s move is “forced”

(but we never call the winning player’s moves “forced”).

0

1

3

4

6

0, 1 taken
so I blocked

II:2

I:1

5

6

0, 1 taken
so I blocked

II:1

I:2

II:2

I:1

2

4

5

6

1

3

4, 5 taken
so I blocked

II:2

I:2 forced

II:1

I:1

6

1

3

5

0, 6 taken
so I blocked

II:2

I:2 forced

II:2

I:2

II:2

I:2

Figure 1: The tree associated with the Example in Section 2. It shows the winning
strategy for Player II in Kotzig’s Nim Γ(1, 2; 7). This is a “reduced” version of the
full game tree. It indicates the moves that the winning player should take. (It omits
the winning player’s other possible moves.)
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3. A New Primitive Theorem

In [2], Corollary 2, Theorem 7, and Theorem 8 completely classify (respectively)

the games Γ(1, 2;n), Γ(2, 3;n), and almost Γ(3, 4;n) (“almost” because the cases

n = ±3 mod 7 are only conjectures in [2]). We emphasize that m2−m1 = 1 in each

case.

The argument in p. 516–517 of [1], attributed to Nowakowski, also classifies

Γ(1, 3;n). Here, m2 −m1 = 2.

We are unaware of any proofs in which the complete classification of Γ(1, 4;n) is

given. Since m2−m1 = 3, this turned out to be a quite challenging task, but we give

a complete classification and proof in Theorem 3.1. This is the main achievement of

the present paper. In Section 4, we pose many new open questions that the reader

may wish to analyze.

Theorem 3.1. If n ∈ {1, 3, 5, 7, 15}, or if n ≡ 3 mod 5 and n ≥ 23, then Γ(1, 4;n) ∈

P; otherwise, Γ(1, 4;n) ∈ N .

Proof. Considering the value of n modulo 5, there are five cases that we consider.

We provide tree diagrams to directly establish each of the five cases. In the tree

diagrams, the solid lines and circles correspond to moves by Player I, and the dashed

lines and circles correspond to moves by Player II. We use a notation on some of the

figures, in a red font, to indicate which positions on the board have been visited.

The diamonds correspond to the “diamond strategy”, in which the player with the

winning strategy chooses the opposite type of move chosen by the other player.

For example, in Figure 3, on the right-hand side of the tree, Player II has recently

moved from 4 to 5. If Player I moves 1 to land at 6, then Player II does the opposite

type of move, i.e., moves 4, to land at 3; on the other hand, if Player I moves 4 to

land at 2, then Player II does the opposite type of move, i.e., moves 1, to land at

3. For more examples of the diamond strategy, see [2].

Case I. n = 5k + 1. If n = 1, then Player I is immediately stuck, and thus

Γ(1, 4; 1) ∈ P . Otherwise, Γ(1, 4;n) ∈ N . For k ≥ 1, Figure 2 shows the game tree

that describes a winning strategy for the first player.

Player I should start with 1.

Each time Player II wants to move 4, Player I responds by moving 1. If Player II

makes k consecutive moves of 4, then Player I should respond by consistently moving

1 during the first k − 1 responses, and then Player I should move 4 as the kth

response. This is the start of the right-hand side of the tree in Figure 2. Then the

diamond strategy will be used k − 1 times in a row, and Player II is forced into a

loss.

On the other hand, if Player II moves 4 exactly j consecutive times for 0 ≤ j ≤

k− 1, and then switches to moving 1 on his (j+1)st move, Player I should respond

by consistently moving 1 for the first j + 1 responses. This is the start of the left-
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0 0

1 1

5j + 15ℓ, 5ℓ+ 1 for 1 ≤ ℓ ≤ j

5j + 25j + 2

5j + 35j + 3

n− 3
5ℓ− 1 or 5ℓ+ 2; and 5ℓ+ 3;

for j + 1 ≤ ℓ ≤ k − 1

n− 2n− 2

n− 1n− 1

5j − 15ℓ− 2, 5ℓ− 1 for 1 ≤ ℓ ≤ j

5j, 5j + 3 taken
so II blocked

(II:4 forced, I:1)j

I:1

II:1 forced

k − j − 1 diamonds in a row

I:1

II:1 by definition of j

(II:4, I:1)j , 0 ≤ j ≤ k − 1

3
5ℓ, 5ℓ+ 1 for 1 ≤ ℓ ≤ k − 1

and 5k, 3

n− 3
5ℓ− 1 or 5ℓ+ 2; and 5ℓ+ 3;

for 1 ≤ ℓ ≤ k − 1

n− 2 n− 2

2 2

3, 6 taken
so II blocked

I:4

II:1 forced

k − 1 diamonds in a row

(II:4, I:1)k−1, II:4, I:4

I:1

Figure 2: Winning strategy for Player I for Γ(1, 4; 5k + 1), where k ≥ 1 and n =
5k + 1.
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hand side of the tree in Figure 2. Then k− j− 1 uses of the diamond strategy force

Player II into a loss.

Case II. n = 5k + 2. If n = 2, then Player I moves 1 and then Player II is stuck,

and thus Γ(1, 4; 2) ∈ N . If n = 7, then Player II has the winning strategy shown

in Figure 3, so Γ(1, 4; 7) ∈ P . Otherwise, for n = 5k + 2, with k ≥ 2, we have

Γ(1, 4;n) ∈ N ; Figure 4 shows the game tree that describes a winning strategy for

the first player.

Player I should start with 4.

If Player II moves 1, the play proceeds as on the left of the tree in Figure 4, from

position 5.

If Player II moves 4 strictly less than k times in a row (say, j times in a row), then

Player I should respond by consistently moving 1. Then, after Player II switches to

move 1 on his (j + 1)st move, Player I should respond by moving 1 again. After a

series of k− j − 1 diamonds, Player I can force the remainder of the moves. This is

the middle of the tree in Figure 4.

If Player II moves 4 at least k times in a row, Player I should respond by con-

sistently moving 1 during his first k− 1 responses, and then switch to moving 4 for

his kth response. Afterwards, Player I wins by forcing the remainder of the moves.

This is the right-hand side of the tree in Figure 4.

Case III. n ≡ 3 mod 5. This case is quite different because, for large n, Player II

has a winning strategy. If n = 3, each player moves once, then Player I is stuck,

so Player II wins. If n = 8, 13, 18, then Player I has the winning strategies in

Figure 5a, Figure 5b, Figure 6, respectively, so Γ(1, 4;n) ∈ N for n = 8, 13, 18. For

n ≡ 3 mod 5, with n ≥ 23, Γ(1, 4;n) ∈ P ; Figures 7, 8, 9, 10, 11, show the winning

strategy for Player II.

Case IV. n = 5k + 4. We have Γ(1, 4;n) ∈ N . For k ≥ 0, Figure 12 displays the

tree corresponding to a winning strategy for player I.

Player I should start with 1. Let j (for 0 ≤ j ≤ k − 1) denote the number of

times at the start that Player II chooses to make a move of 4, before switching to a

move of 1 on the (j+1)st; Player I should always follow with a move of 1. If, on the

other hand, Player II makes k consecutive moves of 4—and if Player I responds with

a move of 1 each time—then Player II will be forced to switch to 1 on Player II’s

(k + 1)st move; thus, naturally j = k in this case.

Afterwards, Player I should move from 5j+2 to 5j+3, and then should implement

k − j diamonds in a row. The remaining moves of Player II are forced. This is

depicted in Figure 12.

Case V. n = 5k. If n = 5 or n = 15, then Player II has the winning strategy shown

in Figures 13a and 14, so Γ(1, 4; 5) ∈ P and Γ(1, 4; 15) ∈ P . Also, Γ(1, 4; 10) ∈ N

as in Figure 13b.
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0

1

2

3

4

5

6

0, 3 taken

so I blocked

II:1

I:1 forced

II:1

I:1

6

3

4

5

2, 6 taken

so I blocked

II:1

I:1 forced

II:4

I:4

II:1

I:1

4

5

3

0, 4 taken

so I blocked

II:1

I:4

Figure 3: Winning strategy for Player II for Γ(1, 4; 7).
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0 0

4 4

55

66

77

88

n − 4
5ℓ − 1 or 5ℓ + 2;

and 5ℓ + 3;
for 2 ≤ ℓ ≤ k − 1

n − 3n − 3

11

22

33

4, 7 taken
so II blocked

I:1

II:1 forced

I:4

II:1 forced

k − 2 diamonds

I:1

II:1

1010

1111

n − 1
5ℓ − 3 or 5ℓ;
and 5ℓ + 1;

for 3 ≤ ℓ ≤ k

33

77

88

99

1313 (1 if n = 12)

1414 (2 if n = 12)

2

5ℓ or 5ℓ + 3;
and 5ℓ + 4;

for 3 ≤ ℓ ≤ k

3, 6 taken
so II blocked

k − 2 diamonds

I:1

II:4 forced

I:1

II:1 forced

I:4

II:4 forced

k − 2 diamonds

I:1

II:4

I:1

II:1

5j + 4
5ℓ + 3, 5ℓ + 4
for 1 ≤ ℓ ≤ j

5j + 55j + 5

5j + 65j + 6

n − 1
5ℓ − 3 or 5ℓ;
and 5ℓ + 1;

for j + 2 ≤ ℓ ≤ k

33

77

5j + 2
5ℓ + 1, 5ℓ + 2
for 2 ≤ ℓ ≤ j

5j + 3, 5j + 6 taken
so II blocked

(II:4 forced, I:1)j−1

I:4

II:4 forced

k − j − 1
diamonds

I:1

II:1 by definition of j

(II:4, I:1)j ,
1 ≤ j ≤ k − 1

5

5ℓ − 2, 5ℓ − 1
for 2 ≤ ℓ ≤ k;

and 1,5

66

77

n − 5
5ℓ − 4, 5ℓ − 3
for 3 ≤ ℓ ≤ k

n − 1n − 1

33

4, 7 taken
so II blocked

I:4

II:4 forced

(II:4 forced, I:1)k−2

I:1

II:1 forced

(II:4, I:1)k−1,
II:4, I:4

I:4

Figure 4: Winning strategy for Player I for Γ(1, 4; 5k + 2), where k ≥ 2 and n =
5k + 2.
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0

4

5

1

2

6

7

3

4, 7 taken

so I blocked

I:4

II:1 forced

I:4

II:1 forced

I:4

II:1 forced

I:4

0

4

5

9

10

1

2

6

7

8

12

3

4, 7 taken
so I blocked

I:4

II:4 forced

I:1

II:1 forced

I:4

II:1 forced

I:4

II:1 forced

I:4

II:1

8

9

10

1

6

7

11

3

4, 7 taken
so I blocked

I:4

II:1 forced

I:4

II:1 forced

I:1

II:4

I:4

Figure 5: Winning strategy for Player I for (a.) Γ(1, 4; 8); (b.) Γ(1, 4; 13).
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0

4

5

9

10

11

12

16

3

7

8

9, 12 taken
so II blocked

I:1

II:4 forced

I:4

II:1

15

1

2

6

7

8

12

16

17

3

4, 7 taken
so II blocked

I:4

II:1 forced

I:4

II:4 forced

I:1

II:1 forced

I:4

II:1 forced

I:4

II:4

I:1

II:1

13

14

15

1

2

6

7

11

12

16

17

3

4, 7 taken
so II blocked

I:4

II:1 forced

I:4

II:1 forced

I:4

II:1

10

11

12

16

17

3

7

8

9, 12 taken
so II blocked

I:1

II:4 forced

I:4

II:1 forced

I:4

II:1 forced

I:1

II:4

I:4

II:1 forced

I:4

II:1 forced

I:1

II:4

I:4

II:1

8

9

10

14

15

1

6

7

11

12

16

3

4, 7 taken
so II blocked

I:4

II:1 forced

I:4

II:1 forced

I:4

II:1 forced

I:4

II:1

13

17

3

7

11

12

16

2

6

10

14

15

1

5

6, 9 taken
so II blocked

I:4

II:4 forced

I:1

II:4 forced

I:4

II:4 forced

I:4

II:4 forced

I:1

II:4 forced

I:4

II:4 forced

I:4

II:4

I:1

II:4

I:4

Figure 6: Winning strategy for Player I for Γ(1, 4; 18).
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0 0

11

22

33

77

n − 1
5ℓ − 2 or 5ℓ + 1;

and 5ℓ + 2;
for 2 ≤ ℓ ≤ k

0, 3 taken
so I blocked

k − 1 diamonds

II:4

I:1

5j + 2
5ℓ + 1, 5ℓ + 2
for 1 ≤ ℓ ≤ j

5j + 35j + 3

5j + 45j + 4

n − 4
5ℓ or 5ℓ + 3; and

5ℓ + 4; for
j + 1 ≤ ℓ ≤ k − 1

n − 2n − 3,n − 2

3n − 1, 3

54, 5

5j5ℓ − 1,5ℓ for 2 ≤ ℓ ≤ j

5j + 1, 5j + 4 taken
so I blocked

(I:4 forced, II:1)j−1

I:1 forced, II:1

I:1 forced, II:4

I:1 forced, II:1

k − j − 1 diamonds

II:1

I:1 by definition of j

(I:4, II:1)j ,
1 ≤ j ≤ k − 2

n − 3
5ℓ + 1, 5ℓ + 2

for 1 ≤ ℓ ≤ k − 2;
and n − 7, n − 3

n − 2n − 2

n − 1n − 1

33

44

n − 4
5ℓ or 5ℓ + 3;

and 5ℓ + 4; for
1 ≤ ℓ ≤ k − 1

n − 3, 0 taken
so I blocked

k − 1 diamonds

II:1

I:4 forced

II:1

I:1 forced

(I:4, II:1)k−2,
I:4, II:4

II:1

I:1

see
next
figure

I:4

Figure 7: Winning strategy for Player II for Γ(1, 4; 5k + 3), where k ≥ 4 and
n = 5k + 3.
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0 0

see
previous
figure

I:1

4 4

5 5

66

1010

2

5ℓ − 4 or 5ℓ − 1,
and 5ℓ, for 3 ≤ ℓ ≤ k;
and n − 2 or 1; and 2

33

77

n − 1
5ℓ − 2 or 5ℓ + 1,

and 5ℓ + 2,
for 2 ≤ ℓ ≤ k;

0, 3 taken
so I blocked

k − 1 diamonds

II:4

I:1 forced

k − 1 diamonds

II:4

I:1

9 9

13 13

1414

1818

see
Figure 9

I:1

see
Figure 10

I:4

II:4

I:1

17 17

21 21

3∗3

87,8

112,16,20,1

62,6

1110,11

1915,19

0, 20 taken
so I blocked

I:4 forced, II:4

I:4 forced, II:1

if ∗ = I:1,II:4; I:1 forced, II:4

if ∗ = I:4,II:1
2,5 taken

so I blocked

(I:4 forced, II:4)2

I:4 forced, II:1

if n = 23

2222

2323

2424

25 25

12

5ℓ − 4 or
5ℓ − 1,

and 5ℓ, for
6 ≤ ℓ ≤ k;

n − 2 or 1; 2;
3 or 6; 7;
8 or 11; 12

2016,20

21, 24 taken
so I blocked

I:4 forced, II:4

k − 2
diamonds

II:1

I:1

see
Figure 11b

I:4

II:1

(if n > 23)
I:1

2525

2929 (or 1 if n = 28)

1
5ℓ or 5ℓ + 3,
and 5ℓ + 4,

for 6 ≤ ℓ < k;
(for n > 28)

n − 3, 1

32, 3

87, 8

2412, 16, 20, 24

3228, 32

n − 1
5ℓ − 2 or 5ℓ + 1, and
5ℓ + 2, for 7 ≤ ℓ ≤ k

0, 3 taken
so I blocked

k − 6 diamonds

if n > 28,
I:4 forced, II:4

if n = 28
0, 25 taken
so I blocked

(I:4 forced, II:4)2

I:4 forced, II:1

I:1
forced,
II:1

k − 5 diamonds

II:4

(if n > 23)
I:4

II:4

I:4

II:4

I:4

II:1

I:4

Figure 8: Winning strategy for Player II for Γ(1, 4; 5k + 3), where k ≥ 4 and
n = 5k + 3.
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1919

2020

2121

2525 (2 if n = 23)

2

5ℓ − 4 or 5ℓ − 1, and 5ℓ,
for 6 ≤ ℓ ≤ k;
n − 2 or 1, 2

33

77

128 or 11, and 12

1616

1717

18, 21 taken
so I blocked

II:1

I:4 forced

II:4

I:1

6 6

10 10

11 11

15 15

16 16

17 17

18, 21 taken
so I blocked

II:1

I:1 forced

II:4

I:1 forced

II:4

I:4

k − 4 diamonds

II:4

I:1

24 24

25 25 (2 if n = 23)

2

5ℓ − 4 or 5ℓ − 1, and 5ℓ,
for 6 ≤ ℓ ≤ k;
n − 2 or 1, 2

33

77

128 or 11, and 12

1616

1717

2121

2222

n − 1
5ℓ − 2 or 5ℓ + 1,

and 5ℓ + 2,
for 5 ≤ ℓ ≤ k;

0, 3 taken
so I blocked

k − 4 diamonds

II:1

I:4 forced

II:1

I:4 forced

II:4

I:1

6 6

10 10

15 11, 15

17 16, 17

22 21, 22

n − 1
5ℓ − 2 or 5ℓ + 1, and
5ℓ + 2, for 5 ≤ ℓ ≤ k;

7 3, 7

12 8, 12

13, 16 taken
so I blocked

I:1 forced, II:4

I:4 forced, II:4

k − 4 diamonds

I:4 forced, II:1

I:1 forced, II:1

I:1 forced, II:4

II:4

I:4

k − 4 diamonds

II:1

I:4

II:1

Figure 9: Winning strategy for Player II for Γ(1, 4; 5k + 3), where k ≥ 4 and
n = 5k + 3.
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2222

33

87, 8

1612, 16

21†17 or 20, 21

62, 6

1110, 11

1915, 19

11, 20

2, 5 taken
so I blocked

if † = I:1,II:4;
I:1 forced,II:4 if † = I:4,II:1

0, 20 taken
so I blocked

I:4 forced, II:4

I:4 forced, II:1

I:4 forced, II:4

I:4 forced, II:4

I:4 forced, II:1

II:4 if n = 23

26 26

3‡ 27 or 2, 3

8 7, 8

16 12, 16

21 17 or 20, 21

1 1, 25

if ‡ = I:4,II:1
2, 5 taken

so I blocked

6 2, 6

11 10, 11

19 15, 19

24
20 or 23,

24

0, 25 taken
so I blocked

I:4 forced, II:4

I:4 forced, II:1

if ‡ = I:1,II:4
I:1 forced, II:4

I:4 forced, II:4

I:4 forced, II:4

I:4 forced, II:1

II:4 if n = 28

26 26

2727

2828

2929

30 30

12

5ℓ − 4 or 5ℓ − 1,
and 5ℓ,

for 7 ≤ ℓ ≤ k;
n − 2 or 1, 2

3 or 6, 7
8 or 11, 12

17 16, 17

25 21, 25

26, 29 taken
so I blocked

I:4 forced, II:4

I:4 forced, II:1

k − 3 diamonds

II:1

I:1

see Fig. 11a

I:4

II:1

I:1

30 30

34 34 (1 if n = 33)

1

5ℓ or 5ℓ + 3,
and 5ℓ + 4,

for 7 ≤ ℓ < k;
n − 3, 1

3 2, 3

8 7, 8

16 12, 16

21 17 or 20, 21

29 25, 29

if n = 33
0, 30 taken
so I blocked

37 33, 37

n − 1
5ℓ − 2 or 5ℓ + 1,

and 5ℓ + 2,
for 8 ≤ ℓ ≤ k;

0, 3 taken
so I blocked

k − 7 diamonds

(if n > 33),
I:4 forced, II:4

I:4 forced, II:4

I:4 forced, II:4

I:4 forced, II:1

I:1 forced, II:1

k − 6 diamonds

II:4

I:4

II:4 if n ≥ 33

Figure 10: Winning strategy for Player II for Γ(1, 4; 5k + 3), where k ≥ 4 and
n = 5k + 3.
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3232

3636 (3 if n = 33)

3 §

5ℓ − 3 or 5ℓ,
and 5ℓ + 1,

for 8 ≤ ℓ ≤ k;
n − 1 or 2, 3

87, 8

1612, 16

21 21

2925, 29

n − 4
5ℓ or 5ℓ + 3,
and 5ℓ + 4,

for 6 ≤ ℓ < k;

if n − 3 taken in §;
0, n − 3 taken
so I blocked

1 n − 3, 1

62, 6

1110, 11

1915, 19

2420 or 23, 24

25, 28 taken
so I blocked

I:4 forced, II:4

I:4 forced, II:1

I:1 forced, II:4

if n − 3 not in §

I:1 forced, II:4

k − 6 diamonds

I:4 forced, II:4

I:4 forced, II:4

I:4 forced, II:1

k − 6 diamonds

II:4 2727

3131 (3 if n = 28)

3∗∗
5ℓ − 3 or 5ℓ, and 5ℓ + 1,

for 7 ≤ ℓ ≤ k;
n − 1 or 2, 3

87, 8

2412, 16, 20, 24

n − 4
5ℓ or 5ℓ + 3,
and 5ℓ + 4,

for 5 ≤ ℓ < k;

if n − 3 taken in ∗∗;
0, n − 3 taken
so I blocked

1 n − 3, 1

if 2 taken in ∗∗;
2, 5 taken

so I blocked
6 2, 6

11 10, 11

19 15, 19

20, 23 taken
so I blocked

I:4 forced, II:4

I:4 forced, II:1

I:1 forced, II:4

if n − 3 not in ∗∗

I:1 forced, II:4

k − 5 diamonds

(I:4 forced, II:4)2

I:4 forced, II:1

k − 5 diamonds

II:4

Figure 11: Winning strategy for Player II for Γ(1, 4; 5k + 3), where k ≥ 4 and
n = 5k + 3; the left-hand side is Figure 11a; the right side is Figure 11b.
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00

11

5j + 15ℓ, 5ℓ+ 1 for 1 ≤ ℓ ≤ j

5j + 25j + 2

5j + 35j + 3

n− 1
5ℓ− 1 or 5ℓ+ 2; and 5ℓ+ 3;

for j + 1 ≤ ℓ ≤ k

5j − 15ℓ− 2, 5ℓ− 1 for 1 ≤ ℓ ≤ j

5j, 5j + 3 taken
so II blocked

(II:4 forced, I:1)j

k − j diamonds in a row

I:1

II:1 by definition of j,
or forced if j = k

(II:4, I:1)j , 0 ≤ j ≤ k

I:1

Figure 12: Winning strategy for Player I for Γ(1, 4; 5k + 4), where k ≥ 1 and
n = 5k + 4.
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Otherwise, for n ≡ 0 mod 5, with n ≥ 20, we have Γ(1, 4;n) ∈ N ; Figures 15

and 16 show the winning strategy for Player I in these cases. Player I should move

4 at the start.

If Player II makes a move of 1, to position 5: Player I should move 1, and

then the play splits according to the left-hand side of Figure 15: If Player II makes

a move of 1, then Player I moves 1 also, and a series of k − 1 diamonds ends the

game. On the other hand, if Player II makes a move of 4, then Player I moves 4

too, followed by k − 3 diamonds. Then Player II moves 4, Player I moves 4, and

the game ends with k − 1 diamonds.

If Player II makes a move of 4, to position 8, then Player I should

move 4, to position 12. The rest of the situation is described on the right-hand

side of Figure 15 and throughout Figure 16. We break the game into cases:

(A.) Right-hand side of Figure 15. Suppose Player II moves 1; then Player I should

move 1. If Player II moves 1, then Player I moves 1, and a series of k− 1 diamonds

ends the game. On the other hand, if Player II moves 4, then Player I moves 1 and

uses k − 4 diamonds to arrive at position n− 1. Then Player II’s next three moves

are forced, followed by Player I moving the same way each time (4, 4; 4, 4; 1, 1).

Then, after a series of k− 3 diamonds, Player II can make just one more move and

then Player I forces the end.

(B.) Middle of Figure 16. If Player II moves 4 a total of j (for j ≤ k − 3) times,

then Player I responds by moving 1 each time. Then (by definition) Player II moves

1, Player I moves 1, and then Player I uses a series of k − j − 3 diamonds. Finally,

Player II is forced to move 4 twice, with Player I responding with a move of 4 each

time, and then a series of j− 1 pairs of moves (Player II moving 4, Player I moving

1) ends the game.

(C.) Right-hand side of Figure 16. If Player II moves 4 a total of k − 2 times,

Player I should respond by moving 1 during the first k − 3 times, and then move 4

on the (k − 2)nd time. Then the play varies, according to whether Player II moves

1 or 4:

(C part 1.) If Player II moves 1, to position 6, then Player I moves 1, Player II

is forced to move 4, and then Player I moves 4. Player II is forced to move 4 for

k − 4 times, followed by Player I moving 1 each time. Then Player II must move 4

again, and Player I moves 4 to end the game.

(C part 2.) If Player II moves 4, to position 9, then Player I moves 4, Player II

is forced to move 1, and then Player I moves 1. Player II is forced to move 4 for

k − 4 times, followed by Player I moving 1 each time. Then Player II must move 4

twice, with Player I responding by moving 4 each time, and the game ends.
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0

1

2

3

4

0, 3 taken
so I blocked

II:1

I:1 forced

II:1

I:1

4

3

2

1

0, 2 taken
so I blocked

II:4

I:4 forced

II:4

I:4

0

1

2

6

7

8

9

3

4

5

6, 9 taken
so II blocked

I:1

II:1 forced

I:4

II:1 forced

I:1

II:1 forced

I:4

II:1

5

9

3

4

8

2

6

7

1, 8 taken
so II blocked

I:1

II:4 forced

I:4

II:4 forced

I:1

II:4 forced

I:4

II:4

I:1

Figure 13: (a.) Winning strategy for Player II for Γ(1, 4; 5); (b.) Winning strategy
for Player I for Γ(1, 4; 10).
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0

1

2

3

7

12

13

14

0, 3 taken
so I blocked

II:1

I:1 forced

II:4

I:1

6

10

11

12

13

14

3

7

8

9

10, 13 taken
so I blocked

II:1

I:1 forced

II:4

I:4 forced

II:1

I:1 forced

II:1

I:1

14

3

8

13

2, 14 taken
so I blocked

II:4

I:4

II:4

I:4

II:1

I:1

4

8

9

10

11

12

2

7

8, 11 taken
so I blocked

II:1

I:1

14

3

7

11

12

13

2

6

7, 10 taken
so I blocked

II:4

I:4 forced

II:1

I:1 forced

II:4

I:4 forced

II:4

I:4

II:1

I:1

12

1

6

11

0, 12 taken
so I blocked

II:4

I:4

II:4

I:4

Figure 14: Winning strategy for Player II for Γ(1, 4; 15).
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0 0

4 4

55

66

77

88

35ℓ − 1
or 5ℓ + 2;
and 5ℓ + 3;

for 2 ≤ ℓ ≤ k

4, 7 taken
so II blocked

k − 1
diamonds

I:1

II:1

10 10

14 14

n − 1 5ℓ
or 5ℓ + 3;
and 5ℓ + 4;

for 3 ≤ ℓ ≤ k − 1

33

77

2

5ℓ − 2 or 5ℓ + 1;
and 5ℓ + 2;

for 2 ≤ ℓ ≤ k

3, 6 taken
so II blocked

k − 1 diamonds

I:4

II:4
forced

k − 3
diamonds

I:4

II:4

I:1

II:1

8 8

12 12

1313

1414

1515

1616

11

5ℓ − 3 or 5ℓ;
and 5ℓ + 1;

for 4 ≤ ℓ ≤ k + 2

12, 15 taken
so II blocked

k − 1 diamonds

I:1

II:1

18 18

19 19

n − 1
5ℓ or 5ℓ + 3;
and 5ℓ + 4;

for 4 ≤ ℓ ≤ k − 1

15 3,7,11,15

17 16,17

2

5ℓ − 2 or 5ℓ + 1;
and 5ℓ + 2;
for 4 ≤ ℓ ≤ k

6 6

10 10

11, 14 taken
so II blocked

I:4

II:4 forced

k − 3 diamonds

II:1 forced, I:1

(II:4 forced, I:4)2,

k − 4 diamonds

I:1

II:4

I:1

II:1

see next figure

II:4 one or more times

I:4

II:4

I:4

Figure 15: Winning strategy for Player I for Γ(1, 4; 5k), where k ≥ 4 and n = 5k.
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0 0

4 4

see
previous
figure

II:1

8 8

12 12

see
previous
figure

II:1

5j + 12
5ℓ + 1, 5ℓ + 2

for 3 ≤ ℓ ≤ j + 2

5j + 135j + 13

5j + 145j + 14

n − 1
5ℓ or 5ℓ + 3 and 5ℓ + 4;

for j + 3 ≤ ℓ ≤ k − 1

153,7,11,15

5j + 10
5ℓ − 1, 5ℓ for
4 ≤ ℓ ≤ j + 2

5j + 11, 5j + 14 taken
so II blocked

(II:4 forced, I:1)j−1

(II:4 forced, I:4)2,

k − j − 3 diamonds

I:1

II:1 by definition of j

(II:4, I:1)j ,
1 ≤ j ≤ k − 3

5

5ℓ + 1, 5ℓ + 2
for 3 ≤ ℓ ≤ k − 1;

and 1,5

66

77

1111

1515

n − 5
5ℓ − 1, 5ℓ

4 ≤ ℓ ≤ k − 1

n − 1n − 1

33

4,7 taken
so II blocked

I:4

II:4 forced

(II:4 forced, I:1)k−4

I:4

II:4 forced

I:1

II:1

9 9

13 13

14 14

15 15

n − 5
5ℓ − 1, 5ℓ for
4 ≤ ℓ ≤ k − 1

11 n − 1, 3, 7, 11

12,15 taken
so II blocked

(II:4 forced, I:4)2

(II:4 forced, I:1)k−4

I:1

II:1 forced

I:4

II:4

(II:4, I:1)k−3,
II:4, I:4

I:4

II:4

I:4

Figure 16: Winning strategy for Player I for Γ(1, 4; 5k), where k ≥ 4 and n = 5k.
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4. Computational Database for Conjectures

We make a series of “primitive” conjectures in Section 4.1, and a host of other

conjectures in Section 4.2, both meant to inspire new research about Kotzig’s Nim.

These conjectures were inspired by combing through the data generated from an

exploratory computation and the resulting database. To assist the reader who

is also interested in conjectures from exploratory data, we have posted all of the

results of our computations on Kotzig’s Nim. All of the computations were per-

formed on an 8-core 3.0 GHz Apple MacPro, using C++. The database itself is lo-

cated at http://www.stat.purdue.edu/~mdw/kotzig/kotzigdatabase.txt and

has 185,134 entries at the time of submission. Each entry is one line of text, con-

taining three positive integers m1,m2, n, and a character value N or P that classi-

fies the starting location of the game of Kotzig’s Nim. All triples {m1,m2;n} with

1 ≤ m1 < m2 ≤ 72 and 1 ≤ n ≤ 72 are found in the database.

Some entries with n > 72 are also given for particular pairs m1,m2 for which

m2 −m1 is relatively small, e.g.,, those pairs m1,m2 corresponding to Conjectures

4.1 through 4.6.

Note: In the opening sentence of the “Concluding Remarks” of [2], Fraenkel et al.

make the conjecture that Player I can win Γ(3, 4;n) for all n = ±3 mod 7. The data

in our database verifies their conjecture for n ≤ 115.

4.1. New Conjectures about Primitive Games

These six “primitive” conjectures are in the same spirit as Theorem 3.1, but we

do not (yet) know of a proof for any of these six, and we would be delighted to

correspond with readers who are interested in finding a methodology sufficiently

robust to handle them. In each conjecture, the move set M = {m1,m2} is fixed,

and with m2 − m1 small. The initial positions of the games are classified as N -

positions or P -positions, depending on the board length n.

Conjecture 4.1. If n ∈ {1, 3, 5, 7, 13, 15, 21, 23, 25, 33, 43}, or if n ≡ 3 mod 10 with

n ≥ 83, then Γ(1, 5;n) ∈ P ; otherwise, Γ(1, 5;n) ∈ N . (Verified for n ≤ 140.)

Conjecture 4.2. If

n ∈ {1, 3, 5, 7, 11, 13, 19, 20, 21, 23, 25, 28, 30, 31, 33, 35, 38, 40, 41, 45, 48, 51, 52},

or if n is equivalent to 2, 3, 5, or 6 modulo 7 with n ≥ 55, then Γ(2, 5;n) ∈ P ;

otherwise, Γ(2, 5;n) ∈ N . (Verified for n ≤ 114.)

Conjecture 4.3. If n is odd and n /∈ {9, 11, 17} then Γ(3, 5;n) ∈ P ; otherwise,

Γ(3, 5;n) ∈ N . (Verified for n ≤ 111.)

Conjecture 4.4. If n ∈ {1, 3, 5, 7, 9, 13, 15, 19, 21, 23, 24, 25, 32, 33, 34, 39}, or if n is

equivalent to 3, 4, 5, 6, or 7 modulo 9 with n ≥ 41, then Γ(4, 5;n) ∈ P ; otherwise,

Γ(4, 5;n) ∈ N . (Verified for n ≤ 109.)
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Conjecture 4.5. If

n ∈ {1, 3, 7, 11, 13, 18, 19, 21, 23, 29, 32, 33, 35, 37, 40, 41, 43, 44, 47, 48, 51, 54, 55},

or if n is equivalent to 2, 3, 4, 7, or 10 modulo 11 with n ≥ 57, then Γ(4, 7;n) ∈ P ;

otherwise, Γ(4, 7;n) ∈ N . (Verified for n ≤ 115.)

Conjecture 4.6. If n ∈ {1, 3, 5, 7, 8, 9, 11, 13, 15, 17, 18, 20, 23, 25, 26, 27}, or if n is

equivalent to 2, 3, 6, 7, or 9 modulo 11 with n ≥ 29, or if n ≡ 8 mod 11 with n ≥ 74,

then Γ(5, 6;n) ∈ P ; otherwise, Γ(5, 6;n) ∈ N . (Verified for n ≤ 112.)

4.2. Other New Conjectures about Kotzig’s Nim

Now we present several more conjectures about other types of periodicities in

Kotzig’s Nim.

The conjectures have been verified for all triples m1,m2, n found in the database

generated from computations described in the introduction to Section 4.

4.2.1. A Conjecture Related to Primitive Games

In [2] and [1], Γ(1, 2;n) and Γ(2, 3;n), were already completely classified. Also

Γ(3, 4;n) was completely classified except for n ≡ ±3 mod 7.

Indeed, Γ(m1,m1 + 1;n) was classified for:

1. n = k(m1 +m2)− 1 in Theorem 4 of [2],

2. n = k(m1 +m2) + 0 in Theorem 5 of [2],

3. n = k(m1 +m2) + 1 in Theorem 6 of [2].

The cases m2 = m1 + 1 and n = k(m1 +m2)± 2 remain open, but we introduce

the following new conjecture:

Conjecture 4.7. Let m1 ≥ 4 and m2 = m1 + 1.

(1.) Consider n = k(m1 +m2)− 2.

If k = 2, then

Γ{m1,m2; k(m1 +m2)− 2} ∈ P when m1 ≡ 2 mod 3,

Γ{m1,m2; k(m1 +m2)− 2} ∈ N otherwise.

If k = 1 or k ≥ 3, then

Γ{m1,m2; k(m1 +m2)− 2} ∈ N when m1 ≡ 0 mod 3,

Γ{m1,m2; k(m1 +m2)− 2} ∈ P otherwise.

(2.) Consider n = k(m1 +m2) + 2.
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If k = 0 or k = 2, then

Γ{m1,m2; k(m1 +m2) + 2} ∈ N .

If k = 1 or k = 3, then

Γ{m1,m2; k(m1 +m2) + 2} ∈ N when m1 ≡ 1 mod 3,

Γ{m1,m2; k(m1 +m2) + 2} ∈ P otherwise.

If k ≥ 4, then

Γ{m1,m2; k(m1 +m2) + 2} ∈ P when m1 ≡ 2 mod 3,

Γ{m1,m2; k(m1 +m2) + 2} ∈ N otherwise.

Remark 4.8. Conjecture 4.7 holds for m1 ≤ 3 too, with only two exceptions:

Γ(1, 2; 3k − 2) ∈ N for k ≥ 4;

Γ{2, 3; 12} ∈ P .

but these relatively small cases were already known from the complete classifications

of Γ(1, 2;n), Γ(2, 3;n), Γ(3, 4;n). We explicitly wrote m1 ≥ 4 in Conjecture 4.7 to

emphasize the new content.

4.2.2. A Conjecture for a Pair of Moves That Differ by 2

In Theorem 4 in [2], where m2 = m1 + 1, the games Γ(m1,m2; k(m1 + m2) − 1)

were classified as all being in N .

Here we make an analogous new conjecture for m2 = m1 + 2:

Conjecture 4.9. Let m2 = m1 + 2. When m1,m2 are both odd, then

Γ{m1,m1 + 2; k(m1 +m2)− 1} ∈ P ,

with one type of exception: When m1 = 1, m2 = 3, and k ≡ 0 mod 3, then for

nonnegative a, we have Γ = {1, 3; 11+ 12a} ∈ N .

Remark 4.10. We did not include the “even” situation in Conjecture 4.9, because

those games are known to be in N . Indeed, if m1 and m2 = m1 + 2 are even, and

if n = k(m1 +m2) − 1, then 2 is relatively prime to n. So by Lemma 2 of [2], it is

equivalent to analyze Γ(m1

2
, m1+2

2
; k(m1+m2)− 1), which is in N by Theorem 4 of

[2]. Thus Γ(m1,m1 + 2; k(m1 +m2)− 1) ∈ N too.
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4.2.3. (Relatively) Low Hanging Fruit?

The following conjectures materialized after the first author spent some time comb-

ing through the data. A few special cases of these conjectures are already known,

and we indicate some of these overlaps in the remarks below. On the other hand,

in most cases, the conjectures below are disjoint from the known results.

Conjecture 4.11. For every pair m1,m2,

Γ{m1,m2; 2(m1 +m2)} ∈ N .

Remark 4.12. When m1 and m2 are both odd, then—since n is even—Conjecture

4.11 follows from Theorem 3 of [2].

Conjecture 4.13. For every pair m1,m2,

Γ{m1,m2; 2m1} ∈ N .

Remark 4.14. Again, when m1 and m2 are both odd, then—since n is even—

Conjecture 4.13 follows from Theorem 3 of [2].

Conjecture 4.15. Letm1 < m2. If there is a value k such that {m1,m2; 2m2−m1}

equals {k, 2k, 3k}, {k, 4k, 7k}, {3k, 5k, 7k}, or {5k, 6k, 7k}, then Γ{m1,m2; 2m2 −

m1} ∈ P . Otherwise, Γ{m1,m2; 2m2 −m1} ∈ N .

Remark 4.16. To prove Conjecture 4.15, it is safe to assume, without loss of

generality, that m1 and m2 are relatively prime. For, if g = gcd(m1,m2), then

we can write m1 = ga and m2 = gb where a, b are relatively prime, and then

Γ(m1,m2; 2m2 −m1) is equivalent to Γ(a, b; 2b− a) by Lemma 1 of [2].

Conjecture 4.17. Let m2 = m1 + d where d 6≡ 0 mod 3. Then

Γ{m1,m1 + d; 3(m1 +m2)} ∈ N .

Conjecture 4.18. Let 3 = m1 < m2. If m2 ≡ 2 mod 4, then Γ{3,m2;m2+1} ∈ P ;

otherwise, Γ{3,m2;m2 + 1} ∈ N .

Remark 4.19. Again, when m1 and m2 are both odd, then—since n is even—

Conjecture 4.18 follows from Theorem 3 of [2].

In the following two conjectures (and also in Conjecture 4.18), move m2 takes

a player almost all the way around the circular board. Therefore, for large m2, it

might be more helpful to interpret a move of m2 spaces clockwise as (equivalently)

a move of n−m2 spaces counterclockwise.

Conjecture 4.20. Let 1 = m1 < m2. If m2 is equivalent to 1, 5, or 6 modulo 10,

then Γ{1,m2; 2 +m2} ∈ P ; otherwise, Γ{1,m2; 2 +m2} ∈ N .
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Conjecture 4.21. Let 2 = m1 < m2. If m2 is equivalent to 2, 6, or 7 modulo 10,

then Γ{2,m2; 1 +m2} ∈ P ; otherwise, Γ{2,m2; 1 +m2} ∈ N .

In the case wherem2 is even in Conjecture 4.21, then Γ(2,m2; 1+m2) is equivalent

to Γ(1, m2

2
; 1 +m2) by Lemma 2 of [2], so we get the following immediate corollary

(that depends on the veracity of Conjecture 4.21, of course):

Corollary 4.22. Let 1 = m1 < m2. If m2 ≡ 1 mod 5 or m2 ≡ 3 mod 5, then

Γ{1,m2; 1 + 2m2} ∈ P; otherwise, Γ{1,m2; 1 + 2m2} ∈ N .

In this last conjecture (and also in Conjecture 4.13), one move takes a player

approximately halfway around the circular board.

Conjecture 4.23. Let 2 = m1 < m2. If m2 is equivalent to 2, 3, or 6 modulo 10,

then Γ{2,m2; 2 + 2m2} ∈ P ; otherwise, Γ{2,m2; 2 + 2m2} ∈ N .

5. Conclusion

Kotzig’s Nim is an excellent game for exploring with students. The game is easy

to learn and fast to play, but investigations into the structure of the game re-

quire students to learn about a variety of computational and mathematical tech-

niques. Many question remain unanswered. The authors hope that the present

paper inspires new investigations. We invite others to utilize our database lo-

cated at http://www.stat.purdue.edu/~mdw/kotzig/kotzigdatabase.txt and

we urge our readers to continue working towards a complete classification of all

Kotzig’s Nim games with move set of size two, i.e., games of the form Γ(m1,m2;n).
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