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a b s t r a c t

Recentwork of Kalpathy andMahmoud (in press) gives very general results for a broad class
of fair leader election algorithms. They study the duration of contestants, i.e., the number
of rounds a randomly selected contestant stays in the competition and another parameter
for the associated tree structure. They present a unifying treatment for leader election
algorithms, and they show how perpetuities naturally come about. Their theory, however,
produces only trivial asymptotic results for the duration of election for some distributions,
such as a truncated geometric distribution. In the case of a truncated geometric distribution,
the limiting distribution of the duration of contestants is degenerate, and the method of
Kalpathy and Mahmoud (in press) does not yield the precise asymptotics. The goal of this
short note is to use an alternative method – namely, the q-series methodology – to make
a very precise asymptotic analysis of the rate of decay of the mean and the variance of the
duration of the election.

© 2014 Elsevier B.V. All rights reserved.

1. Background

Randomized divide and conquer algorithms have several manifestations. In particular, leader election problems are an
interesting class, because randomized elections have a rich mathematical and algorithmic history. Prodinger (1993) pre-
cisely analyzed the average behavior of several characteristic properties for a certain leader election algorithm that flips
unbiased coins. He coined the terminology incomplete trie for the tree structure underlying the elimination process. Using
analytic methods, the exact and asymptotic average for the size of the tree, i.e., the number of nodes, the depth (also known
as the height in the literature) or the number of rounds, and the cost (measured in terms of the total number of coin flips)
were obtained. Fill et al. (1996) used analytic and probabilistic methods to obtain the oscillating distribution of the height
of a random incomplete trie constructed using unbiased coins. Janson and Szpankowski (1997) analyzed the height for bi-
ased coins using analytic techniques. Mohamed (2006) also investigated the biased-case scenario for the height, but used
probabilistic methods. More recently, Louchard and Prodinger (2009) used analytic methods to study the number of rounds
in a coin flipping selection algorithm that occurs in the presence of a demon (who randomly eliminates some contestants).
Louchard et al. (2012), complementing the previous paper, precisely analyzed the distribution and all moments of the num-
ber of survivors in a selection process that occurs in the presence of a demon. Louchard et al. (2011) studied another variant
called the Swedish leader election protocol; they analyzed several parameters, e.g., the probability of success, the expected
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number of rounds, the expected number of players still playing by the time the protocol fails, etc., using analytic methods.
Kalpathy et al. (2011) used analytic and probabilistic techniques to study a leader election algorithm using biased coins for
the duration a particular player survives in the competition and the total cost involved in the selection process.

Somemore general, broad frameworks (which unify some of the above results) have also been proposed, for the study of
leader election algorithms. One such framework was proposed by Janson et al. (2008), giving a theory for the cost associated
with the number of rounds (equivalently, the height of the underlying incomplete tree). Another framework was proposed
by Kalpathy et al. (2013), giving the number of survivors in a broad class of fair leader election algorithms, using the theory of
probabilitymetrics. That framework yields product randomvariables as the limit distribution. The classical example of leader
election is via binomial splitting (where candidates advance in rounds of coin flipping). The binomial splitting protocol is only
one of many possible strategies. More recently, Kalpathy and Mahmoud (in press) provided a broader framework to cover
several splitting strategies of interest at once. They obtain very general results for general strategies, like uniform splitting,
ladder tournaments, etc. They study (a) the duration of a particular contestant, i.e., the number of rounds a randomly selected
contestant stays in the competition, and (b) the total cost of selection. Using probabilitymetrics and the contractionmethod,
they present a unifying treatment for leader election algorithms, and they show how perpetuities naturally come about (see
Kalpathy (2013) for a detailed discussion).

Kalpathy and Mahmoud (in press) look at a set of mild sufficient conditions, which are easily met by most practical
choices of splitting protocols, such as binomial, uniform, ladders, power laws, etc. Their theory, however, produces only trivial
asymptotic results for the duration of election for some distributions, such as a truncated geometric distribution. In the case of a
truncated geometric distribution, the limiting distribution of the duration of contestants is degenerate, and the method of
Kalpathy and Mahmoud (in press) is insufficient for obtaining precise asymptotics.

Thus, the truncated geometric distribution corresponds to a type of leader election example in which sharper tools are
needed, to give necessary precision to the asymptotics. We opted to use the q-series methodology, because it provides
sufficient sharpness, and it can produce such exact asymptotic results.

Wealso emphasize that this type of asymptotic analysis is usually handled bybreaking the classification of the parameters
p and q = 1− p into three separate cases: (1) p = q = 1/2; (2) ln p

ln q is a rational number; (3) ln p
ln q is an irrational number. Our

analysis is sufficiently precise to handle all p’s and q’s.

2. Asymptotic notation

We use the Θ notation from Knuth (1976), which describes the asymptotic growth of functions; we quote from page 20:

‘‘Θ(f (n)) denotes the set of all g(n) such that there exist positive constants C, C ′, and n0 with C f (n) ≤ g(n) ≤ C ′ f (n)
for all n ≥ n0’’.

This notation is quite standard in asymptotic analysis of algorithms. We also use another standard notation to indicate that
f grows at a strictly smaller rate than g , namely, f (n) = o(g(n)) if, for all C > 0, there exists n0 (depending on C) such that
|f (n)| ≤ C |g(n)| for all n ≥ n0.

3. Duration for truncated geometric splitting

Let Dn be the duration of a specific contestant (say Bob) when starting the election with n contestants, i.e., the number of
rounds Bob participated. Note that this is equivalent to the depth of the underlying incomplete tree. We set D0 = D1 = 0. At
the start of a round, if n contestants are present, then Kn contestants advance to the next round. We handle the case where
Kn is a truncated geometric random variablewith parameters p and q := 1 − p. We have

P(Kn = ℓ) = cpqℓ, for some constant c.

Since 1 =
n

ℓ=0 P(Kn = ℓ) = c
n

ℓ=0 pq
ℓ, it follows that c =

1
1−qn+1 . Thus the mass of Kn is

P(Kn = ℓ) =
pqℓ

1 − qn+1
, for ℓ = 0, 1, . . . , n.

Suppose we conduct a leader election among n contestants, in which a fair selection of a subset of contestants of a random
size Kn advances to the next round, and the algorithm is applied recursively on that subset, till one leader or none is elected.
We get the following result.

Theorem 3.1. Let Dn be the duration of a specific contestant that begins with n participants. If the number of contestants who
advance to the next round is a truncated geometric random variable with parameters p and q, then the first and second moments
of Dn are

E[Dn] = 1 +
1
n

n
k=2

kpqk

1 − qk
,
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and

E[D2
n] = 1 +

1
n


3pn

n
k=1

qk

1 − qk
− 3p

n
j=2

j−1
k=1

qk

1 − qk
− 3q


−

1
n


2pq

n
k=1

qk

1 − qk



+
1
n

np2
∞
k=1

q2k

(1 − qk)2
+ np2


∞
k=1

qk

1 − qk

2

− 2p2
n

j=2

j−1
ℓ=1

n
k=ℓ

qk

(1 − qk)
qℓ

(1 − qℓ)


− 2p2

∞
k=n+1

k
ℓ=1

qk

1 − qk
qℓ

1 − qℓ
.

Corollary 3.1. If the number of contestantswho advance to the next round of an election (with n initial participants) is a truncated
geometric random variable with parameters p and q, then the duration Dn of a specific contestant has variance

Var[Dn] =
1
n


3pn

n
k=1

qk

1 − qk
− 3p

n
j=2

j−1
k=1

qk

1 − qk
− 3q


−

1
n


2pq

n
k=1

qk

1 − qk



+
1
n

np2
∞
k=1

q2k

(1 − qk)2
+ np2


∞
k=1

qk

1 − qk

2

− 2p2
n

j=2

j−1
ℓ=1

n
k=ℓ

qk

(1 − qk)
qℓ

(1 − qℓ)


− 2p2

∞
k=n+1

k
ℓ=1

qk

1 − qk
qℓ

1 − qℓ
−

2
n

n
k=2

kpqk

1 − qk
−

1
n2


n

k=2

kpqk

1 − qk

2

.

Theorem 3.1 contains exact characterizations of the first and second moments of the duration of a specific contestant. We
also are interested in the asymptotic properties of the moments. We note that ap :=


∞

k=2
kpqk

1−qk
is a constant (depending

only on p). Thus, E[Dn] = 1 + Θ(1/n), and moreover, limn→∞(E[Dn] − 1)(n) = ap. The plot of ap is given in Fig. 1.
For the second moment expression, we first characterize the contribution of one (relatively) small term, namely,

2p2
∞

k=n+1

k
ℓ=1

qk

1 − qk
qℓ

1 − qℓ
= o(1/n).

Also if we define

bp := lim
n→∞


3pn

n
k=1

qk

1 − qk
− 3p

n
j=2

j−1
k=1

qk

1 − qk
− 3q


,

cp := lim
n→∞


2pq

n
k=1

qk

1 − qk


,

dp := lim
n→∞

np2
∞
k=1

q2k

(1 − qk)2
+ np2


∞
k=1

qk

1 − qk

2

− 2p2
n

j=2

j−1
ℓ=1

n
k=ℓ

qk

(1 − qk)
qℓ

(1 − qℓ)

 ,

then bp, cp, dp are constants (depending only on p). Thus, E[D2
n] = 1+Θ(1/n), andmoreover, we note that limn→∞(E[D2

n]−

1)(n) = bp − cp + dp. The plots of bp, cp, and dp are given in Figs. 2–4, respectively.

4. Proof of Theorem 3.1

Given the value of Kn, we can set up a conditional equation for the value of Dn. We have:
• If n = 0, then K0 = 0 (always), because D0 = 0 in this case. (The rationale is: nobody advances to the next round, so no

additional levels were needed in the election.)
• If n = 1, then K1 is 0 or 1, because D1 = 0 in this case. (The rationale is: only one person is present at the start of the

round, so no additional levels were needed in the election.)
• If n ≥ 2, then Kn is between 0 and n (inclusive). Then:

– Given the value of Kn, Bob is one of the Kn participants with probability Kn/n, so the conditional distribution ofDn (under
these conditions) is the same as the unconditional distribution of 1+DKn . One roundwas used, and Kn contestants will
participate in the next round, including the specific contestant (Bob).

– Given the value of Kn, Bob fails to be one of the Kn participants with probability 1−Kn/n, so the conditional distribution
of Dn (under these conditions) is 1. One round was used, and then the specific contestant (Bob) is removed from the
rest of the election.
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Fig. 1. Plot of ap :=


∞

k=2
kpqk

1−qk
for 1/20 ≤ p ≤ 1.

Fig. 2. Plot of bp := limn→∞


3pn

n
k=1

qk

1−qk
− 3p

n
j=2
j−1

k=1
qk

1−qk
− 3q


for 1/20 ≤ p ≤ 1.

Fig. 3. Plot of cp := limn→∞


2pq

n
k=1

qk

1−qk


for 1/20 ≤ p ≤ 1.

Fig. 4. Plot of dp := limn→∞


np2


∞

k=1
q2k

(1−qk)2
+ np2


∞

k=1
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ℓ=1
n
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qℓ
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
for 1/20 ≤ p ≤ 1.

The rest of the proof is developed using the q-series methodology. We define φn(t) := E[etDn ]. We have φ0(t) = φ1(t) =

1, and then for n ≥ 2, we have the recursion

φn(t) = E[etDn ]

=

n
ℓ=0

E[etDn | Kn = ℓ] P(Kn = ℓ)

=

n
ℓ=0


E[et(1+Dℓ)]

ℓ

n
+ E[et(1)]


1 −

ℓ

n


P(Kn = ℓ)

= et
n

ℓ=0


E[etDℓ ]

ℓ

n
+ 1 −

ℓ

n


P(Kn = ℓ).
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Thus, for n ≥ 2, we have

nφn(t) = et
n

ℓ=0


E[etDℓ ] ℓ + n − ℓ


P(Kn = ℓ)

= netφn(t)
pqn

1 − qn+1
+ et

n−1
ℓ=0

(φℓ(t)ℓ + n − ℓ)
pqℓ

1 − qn+1
.

So, for n ≥ 2, we have

(1 − qn+1)nφn(t) = netφn(t)pqn + et
n−1
ℓ=0

(φℓ(t)ℓ + n − ℓ) pqℓ,

and thus,

n(1 − qn(q + etp))φn(t) = et
n−1
ℓ=0

(φℓ(t)ℓ + n − ℓ) pqℓ.

Hence, for n ≥ 3, we have

(n − 1)(1 − qn−1(q + etp))φn−1(t) = et
n−2
ℓ=0

(φℓ(t)ℓ + n − 1 − ℓ) pqℓ.

It follows that, for n ≥ 3,

n(1 − qn(q + etp))φn(t) − (n − 1)(1 − qn−1(q + etp))φn−1(t) = et (φn−1(t)(n − 1)) pqn−1
+ et(1 − qn).

Rearranging the above equation, we get

n(1 − qn(q + etp))φn(t) = (n − 1)φn−1(t)(1 − qn) + et(1 − qn).

Consequently for n ≥ 3, we have

φn(t) =
(n − 1)(1 − qn)

n(1 − qn(q + etp))
φn−1(t) +

et(1 − qn)
n(1 − qn(q + etp))

.

For n ≥ 3, we obtain the solution

φn(t) =
2
n

n
i=3

1 − qi

1 − qi(q + etp)
φ2(t) +

n
j=3

et

n

n
i=j

1 − qi

1 − qi(q + etp)
,

which is obtained by iteration. Also, we know that

φ2(t) = et
p(1 + q)

1 − q2(q + pet)
= et

1 − q2

1 − q2(q + etp)
.

Therefore, for n ≥ 3, we find

φn(t) =
2et

n

n
i=2

1 − qi

1 − qi(q + etp)
+

n
j=3

et

n

n
i=j

1 − qi

1 − qi(q + etp)
.

Using half of the first term, to serve as the j = 2 term in the second summation, it follows that, for n ≥ 3,

φn(t) =
et

n

n
i=2

1 − qi

1 − qi(q + etp)
+

n
j=2

et

n

n
i=j

1 − qi

1 − qi(q + etp)
. (1)

Note that the equation above holds for n = 2 too.
We define the q-Pochhammer symbol as

(x)n :=

n−1
j=0

(1 − xqj).

To simplify the moment generating function, we note

n
i=j

(1 − qi) =
(q)n

j−1
k=1

(1 − qk)
, and

n
i=j

(1 − qi(q + etp)) =
(q + etp)n+1

j−1
k=0

(1 − qk(q + etp))
. (2)
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Applying (2) to the expression for φn(t) in (1), we get, for n ≥ 2,

φn(t) =
et

n
(q)n

(q + etp)n+1


1

k=0
(1 − qk(q + etp))

1 − q
+

n
j=2

j−1
k=0

(1 − qk(q + etp))

j−1
k=1

(1 − qk)

 .

Since (q)n = (q)∞/(qn+1)∞ and (q + etp)n+1 = (q + etp)∞/((q + etp)qn+1)∞, this yields, for n ≥ 2,

φn(t) =
et

n
(q)∞((q + etp)qn+1)∞

(qn+1)∞(q + etp)∞


1

k=0
(1 − qk(q + etp))

1 − q
+

n
j=2

j−1
k=0

(1 − qk(q + etp))

j−1
k=1

(1 − qk)

 . (3)

Using E[Dn] = limt→0
d
dt φn(t), we obtain

E[Dn] = lim
t→0

 d
dt

et

n
(q)∞((q + etp)qn+1)∞

(qn+1)∞(q + etp)∞


1

k=0
(1 − qk(q + etp))

1 − q
+

n
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j−1
k=0

(1 − qk(q + etp))

j−1
k=1

(1 − qk)




= lim
t→0




d
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et
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
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+
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d
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
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+
et

n
(q)∞((q + etp)qn+1)∞
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d
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 .

The four terms in the expression on the last line simplify to these analogous four terms:

E[Dn] = 1 +

∞
k=0

−pqn+1+k

1 − qn+1+k
+

∞
k=1

pqk

1 − qk
+

1
n


−qp
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+
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1 − qk


.

Equivalently,

E[Dn] = 1 +
1
n

n
k=2

kpqk

1 − qk
.

We now derive the second moment. For succinctness of notation, we write Bn(t) for the following expression:

Bn(t) :=

1
k=0

(1 − qk(q + etp))

1 − q
+

n
j=2

j−1
k=0

(1 − qk(q + etp))

j−1
k=1

(1 − qk)
.
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Starting with the expression for φn(t) in (3), and using E[D2
n] = limt→0

d2

dt2
φn(t), we obtain
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

.

We emphasize that the necessary computations to simplify this expression are non-trivial. The authors diligently tried to
use computational symbolic algebra, butMaple was unable to simplify most portions of the above expression.

Instead, we worked by hand to separate the expression into three portions: the parts without poles, the parts that po-
tentially could yield single-order poles (i.e., multiples of 1

(1−(q+etp)) ), and the parts that potentially could yield double-order
poles (i.e., multiples of 1

(1−(q+etp))2
). Asmust be the case, all of the parts that could potentially correspond to simple or double

poles simplified to 0, as we knew that they must.
After a tremendous amount of simplification, we see that

E[D2
n] = 1 +

1
n


3pn

n
k=1

qk

1 − qk
− 3p

n
j=2

j−1
k=1

qk

1 − qk
− 3q


−

1
n


2pq

n
k=1

qk

1 − qk



+
1
n

np2
∞
k=1

q2k

(1 − qk)2
+ np2


∞
k=1

qk

1 − qk

2

− 2p2
n

j=2

j−1
ℓ=1

n
k=ℓ

qk

(1 − qk)
qℓ

(1 − qℓ)


− 2p2

∞
k=n+1

k
ℓ=1

qk

1 − qk
qℓ

1 − qℓ
.

The above first and secondmoment computations illustrate the kinds of results that one obtains with a truncated geometric
splitting protocol using q-series analysis.

5. Concluding remarks

This short note provides an interesting example to the leader election problem studied in Kalpathy and Mahmoud
(in press), where their theory is insufficient to give an informative limit. Their theory produces only trivial asymptotic results
for the duration of the election, when the splitting protocol Kn follows a truncated geometric distribution. In this scenario,
Kn/n converges in distribution to 0. Intuitively speaking, for the truncated distribution, much of themass is at the beginning
and it has small tail probabilities. It is as if an overwhelming majority of the contestants get eliminated at the start. For such
distributions, the exact calculations aremore interesting than the asymptotics, and the q-seriesmethodology gives a precise
way to produce exact results.

6. Open questions

Another example where the leader election problem studied in Kalpathy and Mahmoud (in press) produces trivial
asymptotic results for the duration iswhen the splitting protocol Kn follows a truncated Poisson distribution. In this scenario,
Kn/n converge in distribution to 0, just like the truncated geometric case. Hence, the exact calculations are more interesting
than the asymptotics. Proceeding on similar lines, itwould be interesting to investigate other truncateddiscrete distributions
such as a truncated Poisson splitting protocol.
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The framework proposed by Kalpathy et al. (2013) gives the number of survivors in a broad class of fair leader election
algorithms, after t number of election rounds, using the theory of probability metrics. We found it challenging to find the
exact moment generating function for the number of survivors with truncated geometric splitting protocol. An intuitive
reason for this difficulty is because of the additional layers of complexity as t grows.
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