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Asymptotic Joint Normality of Counts of Uncorrelated
Motifs in Recursive Trees
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Abstract We study the fringe of random recursive trees, by analyzing the joint
distribution of the counts of uncorrelated motifs. Our approach allows for finite
and countably infinite collections. To be able to deal with the collection when it is
infinitely countable, we use measure-theoretic themes. Each member of a collection
of motifs occurs a certain number of times on the fringe. We show that these
numbers, under appropriate normalization, have a limiting joint multivariate normal
distribution. We give a complete characterization of the asymptotic covariance
matrix. The methods of proof include contraction in a metric space of distribution
functions to a fixed-point solution (limit distribution). We discuss two examples: the
finite collection of all possible motifs of size four, and the infinite collection of rooted
stars. We conclude with remarks to compare fringe-analysis with matching motifs
everywhere in the tree.
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1 Introduction

A random recursive tree is a naturally growing structure that underlies several
stochastic developments, such as recruiting, the spreading of chain letters, contagion,
and the evolution of the Union-Find algorithm. The survey by Smythe and Mahmoud
(1995) is a source for numerous facts, references and applications of recursive trees.

The random recursive tree is a rooted nonplanar tree that grows by the successive
insertion of nodes labelled 1,2,3, . . . . The insertions occur at equispaced discrete time
points 1, 2, 3, . . . . At time 1, node 1 is created as the root. The process goes forth
in the following manner. For i = 2, 3, . . . , after i − 1 insertions, there is a random
recursive tree of size i − 1. When the ith node appears, a node labeled i joins the tree
by randomly choosing any of the existing nodes (with equal probability) as parent.
This new node becomes the child of the selected parent node. After n insertions the
tree has n nodes, and we say it is of size n, and a tree grown in such a manner is a
random recursive tree of size n.

It is straightforward to see that the construction of random recursive trees
induces a uniform distribution on the space of trees of size n: There are (n− 1)!
recursive trees of size n and they are all equally likely. We shall use probabilistic
methods. However, the uniform distribution of the trees is also amenable to analytic
methods (Bergeron et al. 1992).

A leaf is a node that has no children. According to the insertion algorithm, the
labels of the nodes on any root-to-leaf path are an increasing sequence. Therefore,
recursive trees are in the class of increasing trees, which received much attention over
the past two decades (see Panholzer and Prodinger 2004, for example).

We use the word motif to refer to a specific nonplanar unlabelled rooted tree
shape of finite size. For a given motif �, of size γ , let Xn,� be a count of the number
of occurrences of � on the fringe of a random recursive tree of size n. That is, Xn,�
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Fig. 1 Example of a recursive tree of size 30 with three occurrences of a motif on the fringe
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Fig. 2 All motifs of size 4. When generating a recursive tree of size 4, these motifs occur with
probabilities 1

6 ,
1
6 ,

3
6 and 1

6 , from left to right respectively

counts each rooted subtree1 with shape isomorphic to �, such that the rooted subtree
is the motif itself. As an illustration, suppose the realization of the recursive tree after
30 insertions is that in Fig. 1. If � is the third motif (of size γ = 4) from the left in
Fig. 2, it occurs X30,� = 3 times on the fringe of the tree of Fig. 1. Each occurrence
of � on the fringe of the tree in Fig. 1 is shown as a cluster of darkened nodes.
There are other occurrences of �, such as the nodes {5, 6, 8, 24} and {17, 25, 28,30},
but these occurrences do not enter our count, as they are not on the fringe. The
subgraph {5, 6, 8, 24} is not on the fringe as the entire subtree rooted at 5 is larger
than the motif; it includes the additional nodes 9, 13, 14, 19, 21, 27, and 29. Also, the
subgraph {17, 25,28, 30}, is not a motif on the fringe, because of the presence of node
18, so that the entire subtree rooted at 17 is not the same as �. Notice that the motifs
are nonplanar and the subtrees {10, 12,15, 20} and {4, 7, 22,23} are both counted as
matches of �, as both are the same (i.e. isomorphic to each other).

2 Applications

Pattern matching in the context of binary search trees is taken up in Flajolet et al.
(1997). Similar to the application (Flajolet et al. 1997) gives, we have the following
for recursive trees. Knowing the number of occurrences of a particular motif can be
of use in data compression. Instead of storing a motif many times in a tree, we can
store the content with only one nexus pointing to the motif to realize the shape in the
recursive tree. The content itself should be stored in an appropriate canonical order
to fit its original position in the recursive tree. In a plain practical implementation
not utilizing data compression ideas, each of these nodes would carry a number of
pointers (equal to the number of its children). In some applications, like the Union-
Find algorithm, the pointers go in the opposite direction (from a child to its parent),
as clusters join by adjoining their roots, having the root of one cluster point to the
root of the other. In either version, the pointers inside each occurrence of the motif
are eliminated in the proposed implementation.

1In this manuscript subtree refers to a node in the recursive tree and all its descendants.
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We illustrate this application next. There is more than one isomorphic drawing of
a given motif. The different drawings are obtained by permuting the subtrees rooted
at the children of a node. Nonetheless, we can consider only one of these drawings as
a canonical representation. We can, for instance, require the subtrees rooted at the
children of a node to appear in decreasing order of their sizes from left to right, and
if the sizes of several subtrees agree, we draw them so that the labels associated with
their roots are in increasing order. Take for instance, the motif � again to be the the
third motif from the left in Fig. 2. As illustrated in Fig. 1, this motif appears three
times on the fringe. Each of the nodes 1, 2 and 6 points to an occurrence of �. We
can let these pointers be directed to the data blocks {9, 13,14, 21}, {10, 12, 15,20}, and
{4, 22, 23,7}, (in say array implementation) and each block contains only one pointer
to the shape of � (or a description of it). Note that each of the data blocks is stored to
correspond to a root-last and left-to-right traversal of siblings of the canonical form.

3 Uncorrelated Motifs

Let I be a countable indexing set. Let

C = {�i | i ∈ I }

be a given collection of motifs. We say that two motifs are uncorrelated, if neither
appears as a subtree on the fringe of the other, and we call a collection of motifs
a collection of uncorrelated motifs, if its members are pairwise uncorrelated. For
instance, two distinct motifs of the same size are always uncorrelated. Let P i denote
the rooted path of length i. For example,P4 is the leftmost motif in Fig. 2. The rooted
path Pi, of length i < j, is correlated with the rooted path P j, of length j. Knowledge
of joint occurrences can lead to a better understanding of the performance of certain
algorithms. For instance, if there are various stars in the recursive tree underlying
the Union-Find algorithm, it is an indication that several tasks can perform faster in
a parallel computing environment.

In many applications the collection of motifs will be finite, but our presentation
covers cases of countably infinite collections, too. In the present paper, we consider
the joint distribution of Xn,�i , for i ∈ I , in a random recursive tree of size n.

4 Organization

The rest of this paper is organized as follows. In Section 5, we present the main
results. In Section 6, we set up some technicalities: We discuss a probability space
on which our random variables can be defined for each n, and introduce a univariate
linear combination of the number of occurrences of the members of a collection of
motifs. In Section 7 we present the proofs. The proofs are structured in sections:
Sections 7.2, 7.3, 7.4 are (respectively) for the derivation of the mean, variance,
and the Gaussian limit distribution of the univariate linear combination, and a joint
multivariate central limit theorem for the number of occurrences of the members of
the collection. The rate of convergence is discussed empirically in Section 9, where
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we give a supporting simulation study. We give two examples in Sections 8.1 and 8.2.
To put the fringe analysis in perspective, we conclude with remarks on how the result
compares with matching patterns everywhere in the recursive tree.

5 Results

The genesis of this work is in Feng and Mahmoud (2010). In that reference the
authors present a central limit theorem for the number of occurrences of a single
motif �, of size γ , on the fringe of a recursive tree of size n. The results are presented
in terms of C(�), the probability that the random construction of recursive tree of
size γ realizes the motif �. For instance, the four motifs of size 4 in Fig. 2 have C(�)
equal to 1

6 ,
1
6 ,

3
6 and 1

6 , from left to right respectively. A complete characterization of
C(�) is given in Feng and Mahmoud (2010) in terms of the shape of the motif, and
the authors call C(�) a shape functional, as its value is derived from the shape of the
motif.

The main results of this paper are the following.

Theorem 1 Let I be a countable set (f inite or inf inite). Let C = {�i | i ∈ I } be an
uncorrelated collection of nonplanar, unlabeled, rooted trees, each of a f inite size
(motifs). Let Xn,� be the number of occurrences of the motif �, of size γ , on the fringe
of a random recursive tree of size n. Then, we have

Cov[Xn,C ] = �C n,

with

(�C )i, j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(γi + 1)(2γi + 1)− (3γi + 2)C(�i)

γi(γi + 1)2(2γi + 1)

)

C(�i)

× 1{n>2γi}, if i = j;

1

2

(
2E[X2γ ∗

i, j+1,�i X2γ ∗
i, j+1,� j]

2γ ∗
i, j + 1

+ W (2γ ∗
i, j + 2,C , bi, j)

(2γ ∗
i, j + 2)(2γ ∗

i, j + 1)

− C2(�i)

γ 2
i (γi + 1)2

− C2(� j)

γ 2
j (γ j + 1)2

− 2(2γ ∗
i, j + 2)C(�i) C(� j)

γi(γi + 1)γ j(γ j + 1)

)

1{n>2γ ∗
i, j+1}, if i �= j;

whereXn,C is the vector with components Xn,�i , γ
∗
i, j = max {γi, γ j},W (., ., .) is def ined

in Eq. 5, and bi, j is a vector of |I | dimensions with all entries being zero except
positions i and j, where these entries are 1.

Theorem 2 Let I be a countable set (f inite or inf inite). Let C = {�i | i ∈ I } be
an uncorrelated collection of nonplanar, unlabeled, rooted trees, each of f inite size
(motifs). Let Xn,� be the number of occurrences of the motif �, of size γ , on the fringe
of a random recursive tree of size n. Then, we have

Xn,C − μCn√
n

D−→ N|I |(0,�C ),



868 Methodol Comput Appl Probab (2014) 16:863–884

whereXn,C , is the vector with components Xn,�i , andμC is the vector with components

(μC )i = C(�i)

γi(γi + 1)
,

for i ∈ I , and C(�i) is the shape functional of the motif �i, N|I |(0,�C ) is the
jointly multivariate normally distributed random vector in |I | dimensions2 with mean
vector 0 (of |I | components) and |I | × |I | covariance matrix �C .

6 A Probability Space for Recursive Trees

As we intend to discuss a sequence of random variables occurring in growing trees,
the matter is made rigorous by considering a probability space on which all the
random variables are well defined. Let � be the space of all inf inite recursive
trees, which are obtained by perpetuating the insertion ad infinitum. Note that �
is uncountable. Let ω ∈ �, thus we can view ω as one stochastic path. On this
stochastic path define Tn = Tn(ω), the corresponding recursive tree of size n. This
finite tree with n nodes is obtained by pruning any node labeled greater than n in
ω, and destroying any edge that has a child with label n+ 1 or larger. On the other
hand, for a given finite recursive tree Tn there corresponds an uncountable class of
recursive trees ω, such that Tn(ω) = Tn. We can think of this class as the subset of
� induced by Tn; let us call such a class CTn , which is a member of the nth cylinder
of the space. On this space of trees we impose the measure P that gives the finite
cylinder CTn , the probability P(CTn) = 1

(n−1)! , simply meaning the probability of Tn is
1

(n−1)! . That is, P is the measure obtained by Kolmogorov’s extension to agree with
all the finite cylinders. The measure then operates on the sigma field F generated
by the collection of the classes CTn . Henceforth, (�,F , P) is the probability space
underlying any random variables we deal with. So, Xn,� = Xn,�(Tn(ω)) is a random
variable that counts the number of occurrences of a motif � in Tn = Tn(ω).

Toward a multivariate central limit theorem, we work with a univariate linear
combination, and prove a univariate central limit theorem for it, to ultimately use
the Cramér-Wold device, see Theorem 29.4 on p. 383 of Billingsley (1995). More
specifically, we deal with the linear combination

Yn,C ,α = αXn,C =
∑

i∈I
αiXn,�i,

where α is the vector of αi’s, i ∈ I . The product in the middle is a dot product of
the two vectors. This linear combination is well defined on the probability space
just described. It will turn out that Yn,C ,α is asymptotically normally distributed,
and consequently the random variables {Xn,�i | i ∈ I } asymptotically have a joint
multivariate normal distribution.

2Of course, ifI is finite, the limiting multivariate normal involved is a distribution in |I | dimensions.
If |I | is infinitely countable, we take the infinite-dimensional limiting multivariate normal to mean
that every finite subset of the variables in it has a joint multivariate distribution.
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7 Proofs

We discuss the technical proofs in this section, starting with a brief discussion of
averages, followed by the necessary computations of covariances.

7.1 A Stochastic Recurrence for the Linear Combination

We shall use a decomposition of a recursive tree introduced in van der Hofstad et al.
(2002). Remove the special edge joining the nodes labeled 1 and 2. The tree then falls
apart into a forest of two trees. One tree is rooted at 2, which we shall recognize as
a special tree of the original recursive tree (which is a proper subtree of the recursive
tree). The other tree is rooted at 1, which is a nonspecial tree. LetUn be the size of the
special subtree, and so n−Un is the size of the nonspecial tree. It is shown in van der
Hofstad et al. (2002) that Un has a uniform distribution on {1, 2, . . . ,n− 1}. Note
that the special (respectively, nonspecial) tree is isomorphic to a recursive tree of
size Un (respectively, size n−Un) that has the same uniform probability of a random
recursive tree of that size. Also, the two subtrees are conditionally independent
(given Un).

As in Feng and Mahmoud (2010), for n > γ , we have a stochastic recurrence for
Xn,�: It can be composed from the number of occurrences of the motif � in the special
and nonspecial trees, and we need to subtract 1, if the nonspecial subtree is of size γ ,
and assumes the shape �. We shall express the formulation in terms of the indicator
notation: for any event E , the indicator 1E = 1, if E occurs, and 1E = 0 otherwise.
We shall also refer to a Bernoulli random variable with success probability p as
Ber(p). For n > γ , we have a stochastic recurrence, which gives rise to an equality in
distribution:

Xn,�
D= XUn,� + X̃n−Un,� − 1{n−Un=γ } Ber

(
C(�)

); (1)

the tilded random variable X̃n−Un,� is conditionally independent of XUn,� (given Un).
Note also that, for each j ≥ 0, X̃ j,� has the same distribution as Xj,� .

When C contains finitely many motifs, we define γ ∗ := max
i∈I

γi. For such a C , a

recurrence for Yn,C ,α follows naturally from a translation of the stochastic recurrence
(Eq. 1) into

Yn,C ,α
D= YUn,C ,α + Ỹn−Un,C ,α −

∑

i∈I
αi 1{n−Un=γi} Ber

(
C(�i)

)
. (2)

7.2 The Average of the Linear Combination

Let � be a given motif. The average is given in Feng and Mahmoud (2010):

E[Xn,�] = C(�)
γ (γ + 1)

n, n > γ .

It then follows that E[Xn,C ] is a vector with components C(�i)
γi(γi+1) n 1{n>γi}, for each

i ∈ I .
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Let us first consider a finite collection of motifs, with a finite indexing set I . If
n is not large enough, some or all of these components are 0. Observe that, if the
indexing set is finite, we can remove the indicators and simply say that for all i ∈ I ,
the ith component in the vector of averages is C(�i)

γi(γi+1) n, for all n > γ ∗. We have,

E[Yn,C ,α] =
∑

i∈I
αiC(�i)

(
n1{γi<n−1}
γi(γi + 1)

+ 1{γi=n−1}
γi

+ 1{γi=n}
)

, for any n.

In particular

E[Yn,C ,α ] =
∑

i∈I

αiC(�i)

γi(γi + 1)
n, if n > γ ∗.

However, if the indexing set is countably infinite, no such γ ∗ exists, because the
collection of motifs must then contain countably many arbitrarily large trees. For any
n, however large, there is only a finite number of entries in E[Xn,C ] that are nonzero;
the rest are all zero. On the other hand, any individual motif has a finite size, and
at some point in the insertion process, the corresponding entry in the average vector
becomes nonzero, and stays nonzero thereafter. That is,

E[Xn,C ]i =

⎧
⎪⎪⎨

⎪⎪⎩

C(�i)

γi(γi + 1)
n, if n > γi;

C(�i), if n = γi;
0, if n < γi.

Hence, as n → ∞, the vector E[Xn,C ] “fills out” with nonzero components. A similar
argument holds for the variance-covariance matrix.

7.3 The Covariance Structure

Let us again start with a finite collection, with the largest tree among them having
size γ ∗. For computing the covariance of the linear combination we start with the
second moment:

Y2
n,C ,α =

(

YUn ,C ,α + Ỹn−Un ,C ,α −
∑

i∈I
αi1{n−Un=γi} Ber

(
C(�i)

)
)2

= Y2
Un ,C ,α + Ỹ2

n−Un ,C ,α +
(
∑

i∈I
αi1{n−Un=γi} Ber

(
C(�i)

)
)2

+2YUn,C ,αỸn−Un,C ,α − 2YUn,C ,α

∑

i∈I
αi1{n−Un=γi} Ber

(
C(�i)

)

−2Ỹn−Un,C ,α

∑

i∈I
αi1{n−Un=γi} Ber

(
C(�i)

)
.
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To expand the square of the sum, we utilize 1{n−Un=γi}1{n−Un=γ j} = 0, for i �= j. After
expansion, we take expectations and get

E
[
Y2

n,C ,α

] = E
[
Y2

Un ,C ,α

]+ E
[
Ỹ2

n−Un,C ,α

]
+ 2E

[
YUn,C ,αỸn−Un ,C ,α

]

+ E

(
∑

i∈I
α2
i (1{n−Un=γi} Ber

(
C(�i)

)
)2

)

− 2E

(

YUn ,C ,α

∑

i∈I
αi1{n−Un=γi} Ber

(
C(�i)

)
)

− 2E

(

Ỹn−Un ,C ,α

∑

i∈I
αi1{n−Un=γi} Ber

(
C(�i)

)
)

= 2

n− 1

(
n−1∑

k=1

(
E[Y2

k,C ,α ] + E[Yk,C ,α ]E[Yn−k,C ,α ]
)

+
∑

i∈I

(
α2
i C(�i)

2
− αiE[Yn−γi ,C ,α]C(�i)

)

−
∑

i∈I
E
[
αiỸγi,C ,α Ber

(
C(�i)

)]
)

.

We can decompose the last term of the right hand side:

∑

i∈I
E
[
αiỸγi,C ,α Ber

(
C(�i)

)] =
∑

i∈I
E

[

αi Ber
(
C(�i)

)∑

s∈I
αs X̃γi,�s

]

=
∑

i∈I
α2
i C(�i)+

∑

s∈I
s �=i

E
[
αi αs X̃γi,�s Ber

(
C(�i)

)]
.

Note that the terms in the second summation exist only when γi ≥ γs. In that case,
we are looking at the nonspecial tree being �i, and the number of occurrences of the
pattern �s in it. For an uncorrelated collection of motifs, this summation vanishes.
Hence, for n > 2γ ∗, we have

E
[
Y2

n,C ,α

] = 2

n− 1

(
n−1∑

k=1

(
E
[
Y2

k,C ,α

]+ E
[
Yk,C ,α

]
E
[
Yn−k,C ,α

])

−
∑

i∈I

(
α2
i C(�i)

2
+ αiE

[
Yn−γi,C ,α

]
C(�i)

))

.
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Differencing the recurrence for (n− 2)E[Y2
n−1,C ] from that for (n− 1)E[Y2

n,C ], and
using 2E[Yn−1,C ]E[Y1,C ] = 0 (if the motif is not a single node, see the remark
below), we simplify the recurrence to

(n− 1)E
[
Y2

n,C ,α

] = nE
[
Y2

n−1,C ,α

]

+ 2
n−2∑

k=1

E
[
Yk,C ,α

] (
E[Yn−k,C ,α ] − E[Yn−1−k,C ,α ]

)

+ 2
∑

i∈I
αi C(�i)

(
E[Yn−γi−1,C ,α] − E[Yn−γi,C ,α]

)
.

Remark A motif consisting of a single node is correlated with any other motif. If
an uncorrelated C contains a motif � that consists of just one node, it must be
the only motif in the collection C . In this case, Xn,C is just the number of leaves
in a random recursive tree, which is well studied (see Dondajewski and Szymański
1982; Na and Rapoport 1970; Najock and Heyde 1982). Thus, a collection of two
or more uncorrelated motifs cannot contain the single node. Throughout the rest of
the paper, we consider collections C that do not have a motif consisting of a single
node.

For n > 2γ ∗ + 1, we have a recurrence of the form

(n− 1)E
[
Y2

n,C ,α

] = nE
[
Y2

n−1,C ,α

]+W (n,C ,α), (3)

where

W (n,C ,α) = 2
n−2∑

k=1

E
[
Yk,C ,α

] (
E[Yn−k,C ,α ] − E[Yn−1−k,C ,α ]

)

+ 2
∑

i∈I
αiC(�i)

(
E[Yn−γi−1,C ,α] − E[Yn−γi ,C ,α]

)
.

We shall now evaluate W (n,C ,α) term by term:

2
n−2∑

k=1

E[Yk,C ,α]
(
E[Yn−k,C ,α] − E[Yn−1−k,C ,α]

)

= 2
n−2∑

k=1

⎛

⎜
⎜
⎝

∑

i∈I
γi<k−1

αiC(�i)(k)
γi(γi + 1)

+
∑

i∈I
γi=k−1

αiC(�i)

γi
+
∑

i∈I
γi=k

αiC(�i)

⎞

⎟
⎟
⎠

×

⎛

⎜
⎜
⎝

∑

j∈I
γ j=n−k

α jC(� j)+
∑

j∈I
γ j=n−k−1

α j C(� j)(1 − γ j)

γ j
+
∑

j∈I
γ j<n−k−1

α j C(� j)

γ j(γ j + 1)

⎞

⎟
⎟
⎠ .
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This cross-product comprises nine terms, namely a1(n,C ,α), a2(n,C ,α), . . . ,
a9(n,C ,α). Their calculation varies in complexity, with a3(n,C ,α) being the most
involved. We only show the fine details of how to evaluate a3(n,C ,α):

a3(n,C ,α) = 2
n−2∑

k=1

⎛

⎜
⎜
⎝

∑

i∈I
γi<k−1

αi k C(�i)

γi(γi + 1)
×

∑

j∈I
γ j<n−k−1

α j C(� j)

γ j(γ j + 1)

⎞

⎟
⎟
⎠

= 2
n−2∑

k=1

∑

i, j∈I

αi α j kC(�i) C(� j)

γi(γi + 1)γ j(γ j + 1)
1{γi<k−1} 1{γ j<n−k−1}

= 2
n−γ j−2∑

k=γi+2

∑

i, j∈I

αi α j kC(�i) C(� j)

γi(γi + 1)γ j(γ j + 1)

= 2
∑

i, j∈I

αi α j C(�i) C(� j)

2γiγ j(γi + 1)(γ j + 1)
1{γi+2≤n−γ j−2}

× (
(n− γ j − 2)(n− γ j − 1)− (γi + 2)(γi + 1)

)

=
∑

i, j∈I

αi α j C(�i) C(� j)

γiγ j(γi + 1)(γ j + 1)
1{n>γi+γ j+2}

× (
n2 − n(2γ j + 3)+ γ 2

j − γ 2
i + 3(γ j − γi)

)
.

The other eight terms are relatively similar, so we omit the finer details of their
evaluation. We compute

a1(n,C ,α) = 2
n−2∑

k=1

⎛

⎜
⎜
⎝

∑

i∈I[−1pt]γi<k−1

αi k C(�i)

γi(γi + 1)
×

∑

j∈I
γ j=n−k

α j C(� j)

⎞

⎟
⎟
⎠

= 2
∑

i, j∈I

αi α j C(�i) C(� j)(n− γ j)

γi(γi + 1)
1{n>γi+γ j+1},

a2(n,C ,α) = 2
n−2∑

k=1

⎛

⎜
⎜
⎝

∑

i∈I
γi<k−1

αi k C(�i)

γi(γi + 1)
×

∑

j∈I
γ j=n−k−1

α j

(C(� j)

γ j
− C(� j)

)

⎞

⎟
⎟
⎠

= 2
∑

i, j∈I

αi α j C(�i) C(� j)(1 − γ j)(n− γ j − 1)

γiγ j(γi + 1)
1{n>γi+γ j+2},

a4(n,C ,α) = 2
n−2∑

k=1

⎛

⎜
⎜
⎝

∑

i∈I
γi=k−1

αi C(�i)

γi
×

∑

j∈I
γ j=n−k

α j C(� j)

⎞

⎟
⎟
⎠

= 2
∑

i, j∈I

αi α j C(�i) C(� j)

γi
1{n=γi+γ j+1},
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a5(n,C ,α) = 2
n−2∑

k=1

⎛

⎜
⎜
⎝

∑

i∈I
γi=k−1

αi C(�i)

γi
×

∑

j∈I
γ j=n−k−1

α j

(C(� j)

γ j
− C(� j)

)

⎞

⎟
⎟
⎠

= 2
∑

i, j∈I

αi α j C(�i)C(� j)(1 − γ j)

γiγ j
1{n=γ j+γi+2},

a6(n,C ,α) = 2
n−2∑

k=1

⎛

⎜
⎜
⎝

∑

i∈I
γi=k−1

αi C(�i)

γi
×

∑

j∈I
γ j<n−k−1

α j C(� j)

γ j(γ j + 1)

⎞

⎟
⎟
⎠

= 2
∑

i, j∈I

αi α j C(�i)C(� j)

γiγ j(γ j + 1)
1{n>γ j+γi+2},

a7(n,C ,α) = 2
n−2∑

k=1

⎛

⎜
⎜
⎝

∑

i∈I
γi=k

αi C(�i)×
∑

j∈I
γ j=n−k

α j C(� j)

⎞

⎟
⎟
⎠

= 2
∑

i, j∈I
αi α j C(�i)C(� j) 1{n=γ j+γi},

a8(n,C ,α) = 2
n−2∑

k=1

⎛

⎜
⎜
⎝

∑

i∈I
γi=k

αi C(�i)×
∑

j∈I
γ j=n−k−1

α j

(C(� j)

γ j
− C(� j)

)

⎞

⎟
⎟
⎠

= 2
∑

i, j∈I

αi α j C(�i)C(� j)(1 − γ j)

γ j
1{n=γi+γ j+1},

a9(n,C ,α) = 2
n−2∑

k=1

⎛

⎜
⎜
⎝

∑

i∈I
γi=k

αi C(�i)×
∑

j∈I
γ j<n−k−1

α j C(� j)

γ j(γ j + 1)

⎞

⎟
⎟
⎠

= 2
∑

i, j∈I

αi α j C(�i)C(� j)

γ j(γ j + 1)
1{n>γi+γ j+1}.

If we define a10(n,C ,α) = 2
∑

i∈I αiC(�i)
(
E[Yn−γi−1,C ] − E[Yn−γi,C ]), then

along the same lines, we have

a10(n,C ,α) = −2
∑

i, j∈I
αi α j C(�i) C(� j)

(

1{n=γi+γ j} +
1 − γi

γi
1{n=γi+γ j+1}

+ 1

γi(γi + 1)
1{γi+γ j+1<n}

)

.
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Assembling the ten terms, we get a complicated expression involving many indica-
tors for W (n,C ,α). However, this expression simplifies greatly for n > 2γ ∗ + 2; it
becomes

W (n,C ,α) =
⎛

⎝
∑

i, j∈I

αi α j C(�i) C(� j)

γi(γi + 1)γ j(γ j + 1)

⎞

⎠n(n− 1), when n > 2γ ∗ + 2, (4)

and at n = 2γ ∗ + 2, we have

W (2γ ∗ + 2,C ,α) = 2
∑

i, j∈I

αi α j C(�i) C(� j)(2γ ∗ + 2 − γ j)

γi(γi + 1)

+ 2
∑

i, j∈I

αi α j C(�i)C(� j)(1 − γ j)

γiγ j
1{γi=γ j=γ ∗}

+
∑

i, j∈I

αi α j C(�i) C(� j)(2γ ∗ + 2)(2γ ∗ + 1)

γi(γi + 1)γ j(γ j + 1)
1{2γ ∗>γi+γ j}

+
∑

i, j∈I

αi α j C(�i) C(� j)

γi(γi + 1)γ j(γ j + 1)
1{2γ ∗>γi+γ j}

×
(

2γ 3
j − 4γ ∗γ 2

j − γ 2
j − 4γ ∗γ j − γ 2

i − γi − 3γ j

)
. (5)

Note that both Eqs. 4 and 5 are functions of our collection and can be computed
exactly for any given collection C and a given α.

Unwinding recurrence (Eq. 3), and using Eqs. 4 and 5, for n > 2γ ∗ we get

E
[
Y2

n,C ,α

] = n
n− 1

E
[
Y2

n−1,C ,α

]+ 1

n− 1
W (n,C ,α)

= n
2γ ∗ + 1

E
[
Y2

2γ ∗+1,C ,α

]
+ n

n∑

j=2γ ∗+2

W ( j,C ,α)

j( j− 1)

= n
2γ ∗ + 1

E
[
Y2

2γ ∗+1,C ,α

]
+ n

W (2γ ∗ + 2,C ,α)

(2γ ∗ + 2)(2γ ∗ + 1)

+ n
n∑

j=2γ ∗+3

W ( j,C ,α)

j( j− 1)

=
(
∑

i∈I

αi C(�i)

γi(γi + 1)

)2

n2 + σ 2
C ,αn,

where

σ 2
C ,α = E[Y2

2γ ∗+1,C ,α]
2γ ∗ + 1

+ W (2γ ∗ + 2,C ,α)

(2γ ∗ + 2)(2γ ∗ + 1)
− (2γ ∗ + 2)

(
∑

i∈I

αi C(�i)

γi(γi + 1)

)2

.
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We need to evaluate all the terms for n > 2γ ∗ + 1. If our collection includes
only one motif of size γ , then γ ∗ = γ , and the variance matches the calculation
in Feng and Mahmoud (2010). We thus have the variances (diagonal elements of
the covariance matrix) in the form

Var[Xn,�i] =
(
(γi + 1)(2γi + 1)− (3γi + 2)C(�i)

γi(γi + 1)2(2γi + 1)

)

C(�i),

for n > 2γ ∗ = 2γi.
As our result is valid for all real αi (not all zero), we can generate the elements of

the covariance matrix, by using the variance–covariance relation

Var
[
Xn,�i + Xn,� j

] = Var
[
Xn,�i

]+Var
[
Xn,� j

]+ 2Cov
[
Xn,�i , Xn,� j

]
.

We call bi, j the vector α with all the entries equal to 0, except αi and α j, which we set
to 1. When i �= j, an off-diagonal entry in the covariance matrix is

(�C )i, j = Cov
[
Xn,�i, Xn,� j

]

= 1

2

(
Var

[
Xn,�i + Xn,� j

]−Var
[
Xn,�i

]−Var
[
Xn,� j

])

= n
2

(
E[Y2

2γ ∗
i, j+1,C ,bi, j

]
2γ ∗

i, j + 1
+ W (2γ ∗

i, j + 2,C ,bi, j)

(2γ ∗
i, j + 2)(2γ ∗

i, j + 1)
− C2(�i)(2γ ∗

i, j + 2)

γ 2
i (γi + 1)2

− C2(� j)(2γ ∗
i, j + 2)

γ 2
j (γ j + 1)2

− 2 C(�i)C(� j)(2γ ∗
i, j + 2)

γi(γi + 1)γ j(γ j + 1)
−

E[X2
2γ ∗

i, j+1,�i
]

2γ ∗
i, j + 1

+ (2γ ∗
i, j + 1)C(�i)

2

γ 2
i (1 + γ j)2

−
E[X2

2γ ∗
i, j+1,� j

]
2γ ∗

i, j + 1
+ (2γ ∗

i, j + 1)C(� j)
2

γ 2
i (1 + γ j)2

)

,

for n > 2γ ∗
i, j + 1. Expanding E[Y2

2γ ∗
i, j+1,C ,bi, j

], we see that the second moments of
X2γ ∗

i, j+1,�i and X2γ ∗
i, j+1,� j cancel, and thus we get

(�C )i, j = n
2

(
2E[X2γ ∗

i, j+1,�i X2γ ∗
i, j+1,� j]

2γ ∗
i, j + 1

+ W (2γ ∗
i, j + 2,C , bi, j)

(2γ ∗
i, j + 2)(2γ ∗

i, j + 1)

− C2(�i)

γ 2
i (γi + 1)2

− C2(� j)

γ 2
j (γ j + 1)2

− 2(2γ ∗
i, j + 2)C(�i)C(� j)

γi(γi + 1)γ j(γ j + 1)

)

,

for n > 2γ ∗
i, j + 1.

This completes the proof of Theorem 1.

Remark The derivation of the variance in Feng and Mahmoud (2010) contains a
couple of misprints, where the term E[Rγ ] inadvertently appears on lines 11 and 17
of Section 5.2, and should be omitted. Nevertheless, their final result is correct and
matches the result we derive here.
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7.4 Limit Distributions for Varieties of a Fixed Size

In principle, one can continue pumping higher moments of the linear combination by
the recurrence methods utilized for the mean and variance, and attempt to determine
limit distributions by a method of recursive moments (see Chern and Hwang 2001,
for example). The calculation in each higher moment is much more involved than
in the previous one. The variance calculation is already complicated enough. The
mounting complexity in higher moments would be forbidding. Alternatively, we
apply the contraction method, which is transparent for limits.

The contraction method was introduced in Rösler (1999) to analyze the Quick
Sort algorithm, and it soon became a popular method, because of the transparency of
structure that it provides in the limit. Several useful extensions are added in Rachev
and Rüschendorf (1995). General contraction theorems and multivariate extensions
appear in Rösler and Rüschendorf (2001) and Neininger (2001). The latter reference
deals with the specific context of recursive trees. A general theorem that covers a
broad scope of applications is given in Neininger and Rüschendorf (2004). A valuable
survey appears in Rösler and Rüschendorf (2001).

According to the definition of a multivariate normal distribution in infinite
dimensions, it suffices to consider arbitrary finite collections of size (say) r ≥ 1 motifs.
Also, take α to be an arbitrary vector of r real numbers, not all zero. Let

E[Yn,C ,α ] =: μC ,α n = n
∑

i∈I
αi(μC )i,

Var[Yn,C ,α ] =: σ 2
C ,α n = n

∑

i∈I

∑

j∈I
αi α jCov[Xn,�i Xn,� j];

the coefficients μC ,α and σ 2
C ,α , are functions of α1, . . . , αr. We start from the recursive

representation (Eq. 2), normalized in the centered and scaled form

Yn,C ,α − μC ,αn√
n

= YUn,C ,α − μC ,αUn√
Un

√
Un

n

+ Yn−Un ,C ,α − μC ,α(n−Un)√
n−Un

√
n−Un

n

+ 1√
n

∑

i∈I
αi1{n−Un=γi} Ber

(
C(�i)

)
.

Let

Y∗
n,C ,α := Yn,C ,α − μC ,α n√

n
.

To give an insight in the inner working of the contraction method, we first find
the limit heuristically for a finite collection of motifs. Later we prove a Gaussian law.
The recurrence equation for the normalized random variables can be written as

Y∗
n,C , α

D= Y∗
Un ,C ,α

√
Un

n
+ Ỹ∗

n−Un,C ,α

√
n−Un

n
+ C ,α(n)√

n
, (6)

ξ
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where

C ,α(n) :=
∑

i∈I
αi1{n−Un=γi} Ber

(
C(�i)

)

is a bounded toll function, as we have

C ,α(n) :=
∑

i∈I
αi1{n−Un=γi} Ber

(
C(�i)

) ≤
∑

i∈I
αi = |I |max

i∈I
αi = O(1).

Recall that for the heuristic argument we are considering a finite indexing set, and
the maximum in the last expression is merely a number.

If Y∗
n,C ,α converges to a limit Y∗

C ,α , so would Y∗
Un ,C ,α and Ỹ∗

n−Un,C ,α , because both
Un and n−Un grow to infinity almost surely. The terms on the right-hand side in the
representation (Eq. 6) are dependent. However, the correlation between any pair of
them gets weaker as n increases, till ultimately their limits become independent. As
is well known, we have

Un

n
P−→ U,

where U is a standard continuous Uniform(0,1). Subsequently,

√
Un

n
P−→ √

U,

√
n−Un

n
P−→ √

1 −U .

The limit would satisfy the distributional equation

Y∗
C ,α

D= Y∗
C ,α

√
U + Ỹ∗

C ,α

√
1 −U .

A distributional equation of the latter form has the normal distribution as a solution
(see Rösler and Rüschendorf 2001). Such a solution is unique, because it is the fixed-
point solution of a contraction operator on distances in a metric space on distribution
functions.

We shall next give a formal proof of joint asymptotic normality. Suppose H1 and
H2 are two random variables, with distribution functions FH1 and FH2 , respectively.
Recall the Maejimam-Rachev metric (Maejima and Rachev 1987) of order 3:

d3(FH1 , FH2) = sup
{∣
∣E
[
g(H1)− g(H2)

]∣
∣ : ||g(3)||∞ ≤ 1

}
,

where the supremum is taken over every three-times-differentiable function g(·), and
|| · ||∞ is the essential supremum.

Let Vn be a random variable satisfying the recurrence

Vn = VAn + Ṽn−An + Bn,

where An and Bn are sequences of random variables. It is proved in Rachev
and Rüschendorf (1995), that V∗

n = (Vn − E[Vn])/√Var[Vn] is asymptotically the

ξ

ξ
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standard normal, via the distance calculation ds(FV∗
n
, FN1(0,1)) → 0, if the following

conditions hold:

(i) Bn/
√
n → 0.

(ii) Var[V∗
n] converges to some v2 > 0.

(iii) supn E[|V∗
n |3] < ∞.

(iv) An/n
P−→ A, with E[A] > 0, and

lim sup
n→∞

E

[(
An

n

)3/2

+
(
n− An

n

)3/2
]

< 1.

For a proof see Theorem 3.1 in Rachev and Rüschendorf (1995), and the remarks
following the proof, particularly their display (3.25). In our case, Vn is Y∗

n,C ,α , and
Bn is C ,α(n) = O(1); condition (i) is satisfied. According to Theorem 1, we have
Var[Y∗

n,C ,α] → σ 2
C ,α > 0, and condition (ii) is satisfied.

For condition (iii), we first formulate a recurrence. Let Mn,C ,α = Yn,C ,α −
E[Yn,C ,α]; note that Mn,C ,α/

√
n is Y∗

n,C ,α . From the stochastic recurrence (2) we can
then write a recurrence for absolute third moments:

E
[|Mn,C ,α|3

] = E
[
|MUn,C ,α + M̃n−Un,C ,α + C ,α(n)|3

]
.

Via the triangle inequality, we first write

E
[|Mn,C ,α|3

] ≤ E
[(

|MUn,C ,α | + |M̃n−Un,C ,α| + | C ,α(n)|
)3
]

.

Next, we expand the cubic term, which results in ten terms, two of which
are recursive, and the rest are O(n3/2). The calculation for the O terms are
all similar; we argue a couple and omit the rest. For instance, a bound on
E[|M2

Un,C ,α M̃n−Un,C ,α |] follows from the conditional independence, and the bound

E[|M̃n,C ,α|] ≤
√

E[M̃2
n,C ,α] , provided by Jensen’s inequality. For this cross-product

term we can use the conditional independence of YUn ,C ,α and Ỹn−Un,C ,α (givenUn) to
write

E
[
|M2

Un,C ,α M̃n−Un,C ,α|
]
= 1

n− 1

n−1∑

k=1

E
[
M2

k,C ,α

]
E
[
|M̃n−k,C ,α|

]

≤ 1

n− 1

n−1∑

k=1

Var[Y2
k,C ,α ]

√

Var[Y2
n−k,C ,α] .

Theorem 1 asserts that the variances in the sum are all linear, and we have

E
[
|M2

Un,C ,α M̃n−Un,C ,α |
]
≤ σ 3

C ,α

n− 1

n−1∑

k=1

k
√
n− k = O

(
n3/2

)
.

ξ

ξ

ξ
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A cross-product involving C ,α(n), when conditioned on Un, gives only one term
in the sum. For instance, we have

E
[|MUn,C ,α M̃n−Un,C ,α C ,α(n)|

] ≤ 1

n− 1

n−1∑

k=1

E
[|Mk,C ,α|

]
E

[∣
∣
∣
∣
∣
M̃n−k,C ,α

×
∑

i∈I
αi1{n−k=γi} Ber

(
C(�i)

)
∣
∣
∣
∣
∣

]

≤ 1

n− 1

∑

i∈I
E
[|Mn−γi,C ,α |

] |αi|E
[|M̃γi,C ,α|

]

≤ 1

n− 1

∑

i, j∈I
2 n |α j| |αi|E

[|M̃γi,C ,α|
]

= O(1).

All the other cross-product terms are O(n). We thus have an asymptotic recurrence:

E
[|Mn,C ,α|3

] = 2

n− 1

n−1∑

k=1

E
[|Mk,C ,α|3

]+ O(n3/2).

A solution for such a recurrence can be obtained by the differencing method we
applied to the mean and the variance, and we get

E
[|Y∗

n,C ,α |3
] = E

[∣
∣
∣
∣
Mn,C ,α√

n

∣
∣
∣
∣

3
]

= O(1);

condition (iii) is verified.
In our case An is Un, which is the random variable that is uniformly distributed

on the set {1, . . . ,n− 1}. And so, Un/n
D−→ U , where U is the standard continuous

Uniform (0,1) random variable with average E[U] = 1
2 . Subsequently, we have the

computation

lim sup
n→∞

E
[
(Un/n)3/2 + ((n−Un)/n)3/2

] = 4/5 < 1,

and condition (iv) is satisfied. This completes the proof of Theorem 2.

8 Examples

In this section we discuss two illustrative examples, one with a finite collection of
motifs, and one with an infinite collection.

8.1 All the Motifs of Size 4

Consider C to be all motifs of size 4, as depicted in Fig. 2. There are four such motifs
(shown in Fig. 2). Let us call them from left to right T1, . . . ,T4.

ξ

ξ
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These motifs have shape functionals

C(T1) = 1

6
, C(T2) = 1

6
, C(T3) = 3

6
, C(T4) = 1

6
.

Hence Theorem 2 has the following realization:

Xn,C −

⎛

⎜
⎜
⎝

1
1
3
1

⎞

⎟
⎟
⎠

n
120

√
n

D−→ N4

⎛

⎜
⎜
⎝0,

1

16200

⎛

⎜
⎜
⎝

128 −7 −21 −7
−7 128 −21 −7
−21 −21 342 −21
−7 −7 −21 128

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ .

8.2 A Collection of Rooted Stars

Suppose our collection consists of all rooted star trees:

C = {S2, S3, . . .},
where Si is the rooted star of size i, consisting of a root and i − 1 leaves. (The instance
S4 is the rightmost motif in Fig. 2.) Observe that we disallowed S1, the rooted tree
consisting of a single node (root), as it is correlated with any other Si, for any i ≥ 2.
These stars have shape functionals

C(Si) = 1

(i − 1)! .

Whence, the vector of counts (indexed starting at 2) has a countably infinite number
of components and Theorem 2 realizes the form:

Xn,C −

⎛

⎜
⎜
⎜
⎝

1/3!
1/4!
1/5!
...

⎞

⎟
⎟
⎟
⎠
n

√
n

D−→ N∞

⎛

⎜
⎜
⎜
⎝
0,

⎛

⎜
⎜
⎜
⎝

7/90 −1/36 −239/5880 . . .
−1/36 15/448 −11/5760 . . .

−239/5880 −11/5760 16/2025 . . .
...

...
...

. . .

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠
.

9 Simulations and Validation

We performed a simulation study on Example 8.1 to validate our claims in Theorem 2
and empirically test the speed of convergence. We generated random recursive

Table 1 Comparison to
normal probability(μ± σ/2)

n
∣
∣Empirical probability − Actual probability

∣
∣

100 0.1669
1000 0.0546
10000 0.0104
100000 0.0018
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Fig. 3 Plots showing sum of occurrences of the motifs in Fig. 2 converging to normality

trees of sizes n = 100, 1000, 10000, and 100000. Generating all the (n− 1)! would
be computationally expensive, so we sampled 10n of them randomly. We counted
the sum of the number of occurrences of motifs T1, T2, T3, and T4 on the fringe.
We then compared the analytic asymptotic normal probability of lying close to the
mean (within half a standard deviation) with the one estimated by our simulations.
These results are tabulated in Table 1, and we find that our analytic results are
supported very closely by the simulations; the difference is already as low as about
1 % for trees of the moderate size n = 10000, and drops ten fold as n is ten times
larger. Figure 3 shows the histograms of the simulated counts superimposed on the
asymptotic normal density curve. It is very evident that as n → +∞ the distribution
approaches normality.

10 Concluding Remarks

We presented a multivariate central limit theorem for the number of subtrees on
the fringe of a random recursive tree that match a collection of given motifs. A
natural question to ask is How dif ferent would the result be, if the matching is made
everywhere in the recursive tree, not only on the fringe?

Some of the results in the fringe analysis will be preserved, though complications
may arise because of matches at the root. We can write a recurrence to collect
the total number of occurrences of a motif everywhere in a tree, by collecting the
contributions from the special and nonspecial trees of the recursive tree, plus an
indicator signifying the occurrence of the motif at the root. The latter indicator is in
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general complicated. Nevertheless, it can be dealt with explicitly for motifs of small
simple structure.

Take for instance S3 as motif; the rooted tree of size 3 is sometimes called a
cherry (McKenzie and Steel 2000). The illustration in the example in Section 8.2 tells
us thatE[Xn,S3 ] = 1

24 n. How would this result be different, if we searched for matches
everywhere in the recursive tree? Let Qn,S3 be the number of occurrences of a cherry
in a random recursive tree. As mentioned, we collect the number of occurrences from
the special subtree (QUn,S3 ) and the nonspecial tree (Q̃n−Un,S3 ) and we need to adjust
by additional unaccounted for cherries at the root. All the cherries in the nonspecial
tree have been counted in Q̃n−Un,S3 . We only need to add the number of cherries
at the root of the recursive tree that include the special edge (connecting the nodes
labelled 1 and 2). If Rn is the degree of the root of the tree, the special edge forms
Rn − 1 unaccounted for cherries. That is, the stochastic recurrence is

Qn,S3 = QUn,S3 + Q̃n−Un,S3 + Rn − 1.

The distribution of Rn is well known (Szymański 1987). For the average, we can plug
in the needed average of Rn and construct arguments following the same lines we
used in the fringe analysis (differencing then solving recurrences, etc.). These give

E[Qn,S3 ] = n− Hn−1 − 1,

where Hn is the harmonic number
∑n

i=1 1/ i ∼ ln n. Note that, on average, the number
of matching S3’s everywhere in the tree is considerably larger than the number
matching only on the fringe.
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