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Many modern networks grow from blocks. We study the probabilistic behavior of param-
eters of a blocks tree, which models several kinds of networks. It grows from building
blocks that are themselves rooted trees. We investigate the number of leaves, depth of
nodes, total path length, and height of such trees. We use methods from the theory of
Pólya urns and martingales.

1. INTRODUCTION

Various types of trees have been lucid abstractions of networks and have been studied in
great detail in the past. For simple networks, it is adequate to consider the growth by single
node addition. Modern applications are complex, and require a more sophisticated model
for the growth of their structures. Take as an example the growth of large-scale software
applications, which grow by the addition of software modules. Typically new modules like
functions and classes are developed when new functionalities are required for the software.
These modules will get connected to the existing software. A hardware flavor of this applica-
tion would be the growth of Internet networks. Usually computers (or cell phones) connect
to a hub for Internet access. Any of these connected computers can also act as Internet
broadcasting devices (peer-to-peer) themselves. Sometimes a group of computers that have
a tree-like hierarchy within themselves join the network. The growth of these networks is
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mimicked by the growth of trees built from blocks. Machines that do not broadcast would
correspond to the leaves in our tree.

As another motivation, in statistics and computer science, hierarchical Bayesian models
are widely used [7]. As more information is known about the parameters and hyperparam-
eters, the level of hierarchy increases and this kind of tree models the structure between
the priors and hyperpriors involved in the model. In forensic science, some special kinds
of probabilistic expert systems and Wigmorian evidence charts can be modeled as if they
are growing in blocks [5]. In linguistics, the well-studied concept of tree-adjoining grammar
introduced in [8] evolves in the same sense of the trees we study. Some bacterial growth
evolves by aggregation in a tree-like structure. For instance, the bacteria Myxococcus xan-
thus studied in [17] follows this model closely in certain stages of their growth. In human
resource management, the growth of large organizations resembles the trees we analyze,
because the corporate hierarchical structure would grow by blocks with the introduction of
new departments within the company. Moreover, there could be smaller companies acquired
by larger companies.

Other applications for growing trees in blocks include the growth of complex chemical
molecules from isomers; the structure of the Internet protocol (IPv4) address system; the
growth of pyramid schemes where groups get recruited; etc.

2. STOCHASTIC MODEL

We assume that we have a finite collection of blocks which are unlabeled, rooted, nonplanar
trees C = {T1, . . . , Tk}, that occur with respective probabilities p1, . . . , pk (that sum to 1).
We call the tree being constructed from these blocks the “blocks tree” or simply the “tree.”

The blocks tree evolves in steps. At time 0, there is no tree. At time 1, one block from C
starts the tree; it is the jth block with probability pj . The root of this block will remain the
root of the blocks tree that is growing. We use Tn to denote the tree after we have inserted
n ≥ 1 blocks. At step n, with probability pi we sample any block Ti with replacement from
the collection C , and we adjoin it to the tree Tn−1 by choosing a parent node at random
from Tn−1 (all nodes from Tn−1 being equally likely parents). We then attach the tree Ti
to the chosen parent. That is, an edge is constructed to bind the chosen parent to the root
of the chosen building block Ti. A special case is when the collection C consists of only
one node; in this simplest case, the blocks tree is isomorphic to the well-studied standard
recursive tree (see [16] for definition, applications, and results).

2.1. Scope

It is our aim to study properties of the tree evolving from blocks. In Section 3, we study
the leaves. In Section 4, we study in three subsections three types of distances (in three
subsections): The depth of a node, the total path length, and the height. Formal definitions
of these tree parameters will be given in the appropriate sections.

The number of vertices in a tree is its size. For mathematical convenience, we assume
all the building blocks to be of the same size, say t. We leave the case of nonequal block
sizes to future investigations.

2.2. Example

Figure 1 illustrates a collection of two blocks, each of size 4, occurring with probabilities
1/3 and 2/3; since our example has only two blocks, for simplicity, we can refer to them
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Figure 1. A collection of building blocks of size 4, with probabilities 1/3 and 2/3,
respectively.

Figure 2. A tree built from building blocks: (a) the first block occurs with probability 1/3;
(b) the second block occurs with probability 2/3, and the parent is chosen with probability
1/4; (c) the third block occurs with probability 2/3, and the parent is chosen with probability
1/8.

as the “left” and “right” blocks. Figure 2 shows the step-by-step growth of a blocks tree
built from this collection by three insertions, occurring in the order left, right, right. The
newly inserted edge (joining the chosen parent to the chosen new block) is denoted by a
dotted line. The probability of selecting a left block, then a right block, then a right block
is (1/3)(2/3)(2/3); the probability of selecting the two illustrated parents is (1/4)(1/8). So
the path of evolution in Figure 1 has probability (1/3)(2/3)(2/3)(1/4)(1/8).

3. LEAVES

In this section, we analyze the number of leaves in the tree Tn. A leaf in a tree is a terminal
node that has no children. It helps to maintain a color code, to be able to appeal to the
powerful theory of Pólya urns. We color each leaf of every block in C with the lavender (L)
color, and all other (internal) nodes of the blocks with black (B). This coloring induces an
urn scheme. Suppose Ti has �i leaves (and consequently it has t− �i internal nodes). Let ΛC

be a random variable that gives the number of leaves in a randomly chosen block, that is,
ΛC has probability mass

P (ΛC = �) =
∑

j : �j=�

pj ,

that is, the sum is taken over all j such that block Tj has � leaves. For instance, in Figure 1,
the left tree has two leaves, and the right tree has three leaves, so for this example,

P (ΛC = 2) =
1
3
, and P (ΛC = 3) =

2
3
.

If block Ti has �i leaves, it contributes �i leaves to the tree (analogous to adding �i lavender
balls to the urn). One additional adjustment is necessary, if the node chosen as parent is a
leaf: the newly added edge changes one leaf into an internal node, which reduces the number
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of leaves by 1 (i.e., one lavender ball is removed from the urn) and increases the number of
internal nodes by 1 (i.e., one black ball is added to the urn), yielding a net gain of �i − 1
lavender balls and a net gain of t− �i + 1 black balls. If the newly selected parent is an
internal node, then no such adjustment is necessary.

It is customary to represent the dynamics of a two-color Pólya urn scheme as a replace-
ment matrix, indexing the rows and columns by the colors, and using entries corresponding
to the number of balls added. The replacement matrix associated with our urn is

A =
(

ΛC − 1 t− ΛC + 1
ΛC t− ΛC

)
.

The entry AC1,C2 represents the number of balls of color C2 that we add upon withdrawing
a ball of color C1 from the urn, for C1, C2 ∈ {L, B}. The rows are indexed by L and B, from
top to bottom, and the columns are indexed by L and B, from left to right.

Note that the sum across any row of the replacement matrix is t. Pólya urn schemes
satisfying this condition are called balanced. They enjoy the property that—regardless of
the stochastic path followed—the total number τn of balls in the urn after n draws is
deterministic; in our case it is

τn = tn.

Let Ln be the number of lavender balls in the urn (leaves in the tree) after the random
insertion of n blocks. For balanced urns like the type underlying the blocks tree (and more
general unbalanced types called Generalized Pólya Urns), it is shown in [1] that

Ln
n

a.s.−→ λ1v1,

where λ1 is the principal eigenvalue (the eigenvalue with largest real part) of the average of
the replacement matrix, and (v1, v2) is the corresponding left eigenvector of E[A].

A quick calculation shows that the two eigenvalues of E[A] are

λ1 = t, and λ2 = −1,

and the left eigenvector corresponding to λ1 is [1/(t+ 1)](E[ΛC ], t− E[ΛC ] + 1)/[1/(t+ 1).
So, in our case we have

Ln
n

a.s.−→ t

t+ 1
E[ΛC ].

Also, under the condition that λ2, the second eigenvalue, satisfies �λ2 < λ1/2 (as in our
case), Smythe [15] shows that

Ln − λ1v1n√
n

D−→ N (0, σ2),

for some variance σ2. It is common folklore that σ2 is generally hard to compute, and entire
papers have been dedicated to find the asymptotic variance of one specific urn scheme (see
for example [10]). We shall prove a central limit theorem of this type for the leaves, and we
shall be able to pin down σ2. In fact, we shall obtain the exact variance of Ln.

To prepare the landscape for exact work on the mean and variance, we derive recurrence
equations from the construction. Let I(L)

n be the indicator of the event that a lavender ball
is picked at the nth draw. According to the Pólya scheme, we always add ΛC lavender balls,
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except when we attach a new block to a leaf (in which case we subtract 1). We write the
recurrence

Ln = Ln−1 − I(L)
n + ΛC . (3.1)

Noting the independence of ΛC , and the sigma field Fn−1 generated by the first n− 1 draws,
we write a conditional form of the latter equation as

E
[
Ln | Fn−1

]
= Ln−1 − E

[
I(L)
n | Fn−1

]
+ E[ΛC ].

Since I(L)
n has conditional expectation Ln−1/τn−1, the previous equation yields

E
[
Ln | Fn−1

]
= Ln−1 −

Ln−1

t(n− 1)
+ E[ΛC ].

Taking expectation and rearranging terms, we obtain, for n ≥ 2,

E[Ln] =
(
t(n− 1) − 1
t(n− 1)

)
E[Ln−1] + E[ΛC ],

and E[L1] = E[ΛC ]. This recurrence has the solution

E
[
Ln
]

=
tE[ΛC ]
(t+ 1)

n+
(t− 1)E[ΛC ] Γ(n− 1/t)
t(t+ 1)Γ(2 − 1/t) Γ(n)

=
tE[ΛC ]
(t+ 1)

n+
E[ΛC ] (1 − 1/t)n−1

(t+ 1) (n− 1)!

∼ tE[ΛC ]
(t+ 1)

n+O
(
n−1/t

)
,

with rising power notation, aj :=
∏j−1
i=0 (a+ i). The case of adding single nodes is a special

case of a collection consisting of only one single node. Thus, k = 1, t = 1, and ΛC ≡ 1, and
the tree constructed from such a block is reduced to the well-known recursive tree. The
result we presented gives exactly 1

2n leaves, in accordance with [6,12,13].
Squaring (3.1), we obtain a stochastic recurrence for L2

n in the form

L2
n = L2

n−1 + I(L)
n + Λ2

C + 2ΛCLn−1 − 2ΛC I
(L)
n − 2Ln−1I

(L)
n .

Taking expectations again, and as we did before, taking into account the independence and
the conditional behavior of the indicator, we obtain a recurrence for the second moment:

E[L2
n] =

(
1 − 2

τn−1

)
E[L2

n−1] +
(

1 + 2(τn−1 − 1)E[ΛC ]
τn−1

)
E[Ln−1] + E[Λ2

C ].

This recurrence has the solution

E[L2
n] =

t2(E[ΛC ])2

(1 + t)2
n2 +

(
Var[ΛC ]
t+ 2

+
E[ΛC ](t+ 1 − E[ΛC ])

(1 + t)2(2 + t)

)
tn

− 2(1 − 2/t)n−1

(t+ 2) (n− 1)!

(
(E[ΛC ])2(t2 − 2)

(1 + t)2
+ E[ΛC ] − E[Λ2

C ]
)

+
E[ΛC ](1 − 1/t)n−1

(1 + t) (n− 1)!

(
1 +

E[ΛC ](2)(tn− 1)
t+ 1

)
.
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Subtracting off the square of the mean, we observe a cancelation of the n2 order, and we
end up with a linear asymptotic variance:

Var[Ln] = E[L2
n] − E[Ln]2

∼
(

Var[ΛC ]
t+ 2

+
E[ΛC ](t+ 1 − E[ΛC ])

(1 + t)2(2 + t)

)
tn+O(n1−ε)

:= σ2
C n.

Noting the uniform integrability, we arrive at the following result.

Theorem 1: Let Ln be the number of leaves in a random tree built from the building blocks
T1, . . . , Tk, which are selected at each step with probabilities p1, . . . , pk. Let E[ΛC ] be the
average number of leaves in the given collection, and Var[ΛC ] be the variance. Then,

Ln − (tE[ΛC ])/(t+ 1)n√
n

D−→ N
(
0, σ2

C

)
,

where

σ2
C :=

(
Var[ΛC ]
t+ 2

+
E[ΛC ](t+ 1 − E[ΛC ])

(1 + t)2(2 + t)

)
t.

4. DISTANCES IN THE TREE

The distance between two nodes in a tree is the number of edges in the path joining them.
We are concerned with three types of distances in the tree: the depth of a node (its distance
from the root), the total path length (sum of all such depths over all the nodes of the
tree), and the height (the maximum of all depths). These types of distances have been
studied in some related tree models. For instance, the first two types of distance for the
usual recursive trees are studied in [9], while the height of trees in this class is studied
in [14]. (The recursive tree is a very special class of our model.) The depth of nodes in
b-ary recursive trees (increasing trees with restricted outdegrees) is studied in [11], and the
height of a generalized class of edge-weighted random trees is studied in [4]. This general
class includes as special cases random binary search trees, random recursive trees, random
plane oriented trees, and random split trees.

4.1. Depth

As we shall argue, for distributional properties of the depth of a node in the nth block, it
suffices to study the depth of the root of that block.

At step n, the newcomer can join any of the n− 1 existing blocks. Hence, the root of
the nth block inherits the depth of any of the existing blocks, adjusted by the depth of the
node it is choosing as parent within its block plus an extra 1 (to account for the extra edge
used to join the root of the new block to the chosen parent). Let us call the block to which
the parent belongs the parent block. The parent block is of the ith type in the collection
C , with probability pi. The adjustment alluded to can attain the value �+ 1, if one of the
nodes at depth � in the parent block is chosen (with probability 1/t). All existing blocks
have the same probability to be chosen as a parent block, which is 1/(n− 1). We define
δn to be the random depth at which the nth parent node appears in its own block. Note
that δ1, δ2, . . . are equidistributed. We define a new random variable ΔC (representing the
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generic depth of a parent node in its own parent block), which is completely determined by
the structure of the blocks in the collection; each δn has the same distribution as ΔC . The
typical depth for the collection in Figure 1 is

ΔC =

⎧⎪⎨
⎪⎩

0, with probability 3/12;
1, with probability 7/12;
2, with probability 2/12.

Let Dn denote the depth of the (root of the) nth inserted block. Let φY (t) := E[etY ] be the
moment generating function of a random variable Y . We can write a recurrence for φDn

(t),
reflecting the following argument. Associated with ΔC is a moment generating function
ψC (u) = φΔC

(u). Also associated with the collection is an average E[ΔC ] and a variance
Var[ΔC ], that can be obtained, for example, from the derivatives of φΔC

(u).
For each 1 ≤ i < n, the nth inserted block is connected to a parent in the ith block

with probability 1/(n− 1), and Dn = Di + δn + 1. Thus, recalling that Fn is the sigma
field generated by the first n insertions, we have

E
[
eDnu | Fn−1

]
= E

[
n−1∑
i=1

e(Di+δn+1)u 1
n− 1

∣∣∣∣∣ Fn−1

]
=

1
n− 1

E
[
e(δn+1)u

] n−1∑
i=1

eDiu.

The last line follows from the independence of δn from all previous history. The recurrence
is valid for n ≥ 2. Taking double expectation, we obtain

φDn
(u) =

euψC (u)
n− 1

n−1∑
i=1

φDi
(u),

valid for n ≥ 2, with the initial condition φD1(u) = 1. This is a full-history recurrence, which
we can solve by differencing. We subtract the version of the recurrence for (n− 2)φDn−1(u),
from the version for the recurrence for (n− 1)φDn

(u). After reorganization of terms, we
obtain

φDn
(u) =

(n− 2) + euψC (u)
n− 1

φDn−1(u).

This form can be iterated all the way back to the initial conditions, giving us an explicit
representation of the moment generating function of the depth of the root of the nth inserted
block:

φDn
(u) =

1
(n− 1)!

n∏
j=2

(
j − 2 + euψC (u)

)
. (4.1)

This explicit form can be manipulated in a number of ways to give us exact and asymp-
totic moments. The result is in terms of H(s)

n , the nth harmonic numbers of order s, defined
as H(s)

n =
∑n
j=1 1/js. (The superscript s is ordinarily omitted, when it is 1.)

Proposition 1: Let Dn be the depth of the root of the nth inserted block in a random tree
built from blocks. Then,

E[Dn] =
(
E[ΔC ] + 1

)
Hn−1 ∼

(
E[ΔC ] + 1

)
lnn,

Var[Dn] =
(
Var[ΔC ] +

(
E[ΔC ] + 1

)2)
Hn−1 −

(
E[ΔC ] + 1

)2
H

(2)
n−1

∼
(
Var[ΔC ] + (E[ΔC ] + 1)2

)
lnn.
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Proof: The rth moment is obtained by taking the rth derivative of (4.1), with respect to
u, and evaluating at u = 0. It expedites the calculation to first take logarithms. The mean
(r = 1) is readily computed. Likewise, the second moment (r = 2) follows by taking the
second derivative of (4.1), with respect to u, and evaluating at u = 0. The variance then
follows by subtracting the square of the mean. �

Theorem 2: Let Dn be the depth of the root of the nth inserted block in a random tree
built from the building blocks T1, . . . , Tk, which are selected at each step with probabilities
p1, . . . , pk. Let E[ΔC ] be the average depth of a node in the given collection, and Var[ΔC ]
be the variance of that depth. Then,

Dn − (E[ΔC ] + 1)lnn√
lnn

D−→ N
(
0,Var[ΔC ] + (E[ΔC ] + 1)2

)
.

Proof: Consider first the moment generating function of the depths in the collection. At
the scale of 1/

√
lnn, we have

exp
(

u√
lnn

)
ψC

(
u√
lnn

)
=
(

1 +
u√
lnn

+
u2

2 lnn
+O

(
1

ln3/2 n

))

×

⎛
⎝1+

E[ΔC ]u√
lnn

+

(
Var[ΔC ] +

(
E[ΔC ]

)2)
u2

2 lnn
+O

(
1

ln3/2 n

)⎞⎠

= 1 +
E[ΔC ]u+ 1√

lnn
+

(
Var[ΔC ] +

(
E[ΔC ]

)2 + 2E[ΔC ] + 1
)
u2

2 lnn

+O

(
1

ln3/2 n

)
. (4.2)

The moment generating function in (4.1) can be written in terms of Gamma functions as

φDn
(u) =

Γ(n− 1 + eu/
√

lnnψC (u))
Γ(n) Γ(ψC (u))

.

So, for any fixed real number u, we have

E
[
exp
((

Dn − (E[ΔC ] + 1) lnn√
lnn

)
u

)]

= φDn

(
u√
lnn

)
× exp

(
−(E[ΔC ] + 1)u

√
lnn
)

=
Γ
(
n− 1 + eu/

√
lnnψC

( u√
lnn

))
Γ

(n) Γ
(
ψC

(
u√
lnn

))

× exp
(
−(E[ΔC ] + 1)u

√
lnn
)
.
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Using Stirling’s approximation of the Gamma functions, we obtain

E
[
exp
((

Dn − (E[ΔC ] + 1) lnn√
lnn

)
u

)]

∼ nexp(u/
√

lnn)ψC (u/
√

lnn)−1 exp(−(E[ΔC ] + 1)u
√

lnn)

= exp
((

eu/
√

lnnψC

(
u√
lnn

)
− 1
)

lnn
)

exp(−(E[ΔC ] + 1)u
√

lnn). (4.3)

Utilizing the expansion in (4.2), we arrive at

E
[
exp
((

Dn − (E[ΔC ] + 1) lnn√
lnn

)
u

)]

= exp

((
1 +

(E[ΔC ] + 1)u√
lnn

+

(
Var[ΔC ] + (E[ΔC ]2 + 1)2

)
u2

2 lnn

+ O

(
1

ln3/2 n

)
− 1
)

lnn− (E[ΔC ] + 1)u
√

lnn
)

→ e(Var[ΔC ]+(E[ΔC ]+1)2)u2/2.

The right-hand side is the moment generating function of the random normal vari-
ate N (0,Var[ΔC ] + (E[ΔC ] + 1)2), and the result follows from Lévy’s continuity
theorem [3]. �

Corollary 3: The depth of a node joining the tree at the nth step follows Theorem 2.

Proof: A node joining the tree at the nth step appears at depth Dn + δn+1, which is
distributed like Dn + ΔC+1. We have ΔC /

√
lnn a.s.−→ 0. The result follows from Slutsky’s

theorem [3]. �

Remark: The expressions in Proposition 1 are valid, even if t = t(n) grows with n. For
instance, if we fix a number n, and choose the collection to be all the blocks of size n2,
occurring with probabilities consistent with recursive trees, then

E[Dn] =
(
Hn2−1 + 1

)
Hn−1 ∼ 2 ln2 n,

where we use results from [6] for the exact and asymptotic average depth of such a collection
of large blocks. However, in the asymptotic derivations of the central limit theorem for the
depth (Theorem 2) we have to keep t relatively very small, compared to n. The delicate step
is (4.3), where we applied Stirling’s approximation to the Gamma function. For collections
where ψC (u/

√
lnn) grows slowly relative to n, we can still muster a statement like the central

limit theorem in Theorem 2. For instance, if the collection of building blocks is comprised
of one (rooted) path of length g(n) = o(lnn), then ΔC is uniformly distributed on the
set {0, 1, . . . , g(n) − 1}. In this case, ψC (u/

√
lnn) = o(lnn). The Stirling approximation is
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applicable and the rest of the computation proceeds as in the proof of Theorem 2, yielding

E
[
exp
((

Dn − (E[ΔC ] + 1) lnn√
lnn

)
u

)]
∼ e(Var[ΔC ]+(E[ΔC ]+1)2)u2/2.

In other words, after plugging in the mean and the variance of the uniform distribution, we
have the central limit theorem in the form

Dn − 1
2 (gn + 1) lnn

gn
√

lnn
D−→ N

(
0,

1
3

)
.

4.2. Total Path Length

Let T be a rooted tree. Define the depth D̃(v) of node v in T as the distance from v to the
root of T (i.e., the number of edges in the path joining v to the root). To simplify notation,
we write v ∈ T to mean v is in the vertex set of T . Define the total path length of T as

X(T ) =
∑
v∈T

D̃(v).

Each block has its own total path length. Let xi be the total path length of a block Ti, and
let χC be a discrete random variable that assumes the value xi, with probability

∑
j pj ,

where the sum is taken over every block Tj with total path length xi. Thus, χC represents
a “weighted average total path length” of the blocks added at each step. For instance, for
the blocks in Figure 1

P (χC = 5) =
1
3
, and P (χC = 3) =

2
3
.

Think of the distribution of χC as the weighted average distribution of the total path
length associated with the collection of building blocks. The entire tree Tn built from the
first n inserted blocks has total path length Xn = X(Tn).

We can formulate a stochastic recurrence relation for Xn. If the nth block is adjoined
to a node v ∈ Tn−1, at depth D̃(v) in the tree Tn−1, each node in the last inserted block
appears at distance equal to D̃(v) + 1, plus its own depth in the last block. The random
path length of the last inserted block is independent of Fn−1, and we again have a stochastic
recurrence:

E[Xn | Fn−1] = Xn−1 + t

⎛
⎝ 1
t(n− 1)

∑
v∈Tn−1

D̃(v) + 1

⎞
⎠+ E

[
χC | Fn−1

]

= Xn−1 +
Xn−1

n− 1
+ t+ E[χC ], (4.4)

valid for n ≥ 2. Note that the quantity t+ E[χC ] is entirely determined by the given
collection and the given frequency of its blocks.
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Proposition 2: For n ≥ 0, we have

E[Xn] =
(
t+ E[χC ]

)
nHn − nt ∼

(
t+ E[χC ]

)
n lnn,

and

Var[Xn] = n(n+ 1)

⎛
⎝(E[χC ] + t

)2( 2Hn

n+ 1
−H(2)

n

)
− 2t

(
E[χC ] + t

)( 1
n+ 1

− 3
2

)

+ t2
(

2E[ΔC ]
(
E[ΔC ] + 1

)
+ Var[ΔC ] + (E[ΔC ] + 1)2

)(
1
2
− Hn

n+ 1

)

+
1
2
t2(E[ΔC ] + 1)2

n−1∑
j=1

(H2
j−1 −H

(2)
j−1)

(
1

j(j + 1)
− 1
n(n+ 1)

)⎞⎠

+
(
t2(1 + E[Δ2

C ]) + 2tE[χC ]
)n(n− 1)

2
+ n2E[χ2

C ]

+
(
t+ E[χC ]

)2
nH2

n − 2
(
t+ E[χC ]

)
nHn t− t2n2 − 2

(
E[χC ] + t

)2
n2

∼
(
t2
(
E[Δ2

C ] + 2(E[ΔC ])2 + 4E[ΔC ] + 4
)

+ E[χ2
C ]

+ 4tE[χC ] −
(
E[χC ] + t

)2(2 +
π2

6

))
n2.

Proof: Taking expectation of (4.4), we have a recurrence for the mean value:

E[Xn] =
n

n− 1
E[Xn−1] + t+ E[χC ]. (4.5)

Solving this recurrence by standard differencing methods, we find that E[Xn] =
(
t+

E[χC ]
)
nHn − nt, for n ≥ 2. Note that the expression is also valid for n = 0, and n = 1.

A complete presentation of the variance computation is daunting, and certainly too
lengthy for the page constraints of a journal publication. We only sketch the calculation,
bringing to the fore a few key points. Let Ďn be the depth of the node chosen as parent for
the root of the nth block. Then, we have the stochastic recurrence

Xn = Xn−1 + t(Ďn + 1) + χC ,

and the conditional expectation

E[X2
n | Fn−1

]
= E

[
(Xn−1 + t(Ďn + 1) + χC )2 | Fn−1

]
.

Squaring out, we obtain terms involving E[Ďn | Fn−1]. Observe that this conditional expec-
tation is Xn−1/(t(n− 1)). When we take the expectation of E[Xn−1 | Fn−1], observe that
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χC is independent of the sigma field Fn−1, and simplify arrive at the recurrence

E[X2
n] =

n+ 1
n− 1

E[X2
n−1] +

2n
n− 1

(
E[χC ] + t

)
E[Xn−1]

+ t2E[Ď2
n] + t2 + 2tE[χC ] + E[χ2

C ]. (4.6)

We already have an exact expression for E[Xn−1] (cf. (4.5)). If we determine an exact
expression for E[Ď2

n], the latter recurrence takes the form

an =
n+ 1
n− 1

an−1 + ξ(n),

with a known function ξ(n), which can be solved by standard methods, giving

an = n(n+ 1)

(
n∑
k=2

ξ(k)
k(k + 1)

+
a1

2

)
. (4.7)

As for E[Ď2
n], which appears in ξ(n), we can obtain an exact expression from a recur-

rence. If the parent block is the jth in the succession of insertions (with root at depth
Dj), the chosen parent node appears at distance Δ(j)

C from the root of the block. Thus, we
have

E[Ď2
n | Fn−1] =

∑n−1
j=1 (Dj + Δ(j)

C )2

n− 1
=

1
n− 1

n−1∑
j=1

(
D2
j + 2DjΔ

(j)
C + (Δ(j)

C )2
)
.

Taking expectations yields an expression on the right-hand side that involves known facts
about E[D2

j ] and E[Dj ] (see Proposition 1).

E[Ď2
n] =

1
n− 1

n−1∑
j=1

(
E[D2

j ] + 2E[ΔC ]E[Dj ]
)

+ E[Δ2
C ]

=
1

n− 1

n−1∑
j=1

(
Var[ΔC ]Hj−1 + (E[ΔC ] + 1)2(Hj−1 −H

(2)
j−1 +H2

j−1)

+ 2E[ΔC ]
(
E[ΔC ] + 1

)
Hj−1

)
+ E[Δ2

C ].

Substituting into (4.6) and using the known solution (4.7), the result follows. �

Theorem 4: Let Xn be the total path length of a tree built from the blocks of a collec-
tion C . Then, there is an absolutely integrable random variable X, such that Xn/n−

(
t+

E[χC ]
)
Hn + t converges to X, both in L2 and almost surely.

Proof: From the conditional expectation in (4.4), it easily follows that X∗
n := Xn/n−

(
t+

E[χC ]
)
Hn + t is a martingale. By the asymptotic relation for the variance in Proposition 2,

there exists a constant c such that

E
[
X2
n

]
n2

= c+ o(1).

Hence, we have supn≥1 E
[
(X∗

n)
2
]
<∞, and the stated result follows from Doob’s martingale

convergence theorem [3]. �
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Remark 1: A similar remark like the one we made about the depth remains valid for the
total path length. Namely, the expressions in Proposition 2 are valid, even when t = t(n)
is no longer fixed but grows with n. For the example in the previous remark, with all the
recursive tree shapes of size n2 as building blocks, we have

E[Xn] ∼ 2n2 ln2 n,

where we used results from [9] for the asymptotic average total path length of such a
collection of large blocks.

4.3. The Height

Let Hn be the height of a random tree grown from blocks, that is, the distance of a node
at maximum depth among all the existing nodes:

Hn = max
v∈Tn

D(v).

For this parameter, we shall develop only first order asymptotics, and for that a less sophis-
ticated argument is sufficient. We derive a strong law from a similar one for the usual
recursive tree. The tool for this is a monotonicity argument to sandwich the height of the
blocks tree between lower and upper bounds derived from the usual recursive tree via a
“bursting” method.

The blocks tree can be viewed equivalently as grown as follows. Let us first recall the
definition of the standard recursive trees, and review facts known about its height. The
standard recursive tree grows out of a root node in steps. At each step, a new node is
added by choosing a parent node from the existing tree at random (all nodes are equally
likely). Let Ĥn be the height of the recursive tree (the distance from the root of a node with
maximal depth). Pittel [14] shows that

Ĥn

lnn
a.s.−→ e. (4.8)

Theorem 5: Let Hn be the height of a random tree built from the building blocks T1, . . . , Tk,
which are selected at each step with probabilities p1, . . . , pk. We then have

Hn

lnn
a.s.−→ e

(
E[ΔC ] + 1

)
.

Proof: The blocks tree can be obtained from a recursive tree by bursting its nodes: sequen-
tially according to their order of appearance (time index) in the recursive tree, each node is
replaced with (bursts into) a block, with block Ti being chosen with probability pi, then each
child of that node in the recursive tree independently chooses a parent in the parent block
at random, with all nodes of that parent being equally likely (each may be taken as par-
ent with probability 1/t). In n steps, this sequence of operations transforms the uniformly
random recursive tree into a random blocks tree.

We can now see that Hn and Ĥn are connected. Suppose v1, . . . , vĤn
is a path in the

recursive tree leading from the root to a node at the highest level (of depth Ĥn). Thus, v1
is necessarily the root. When v1 bursts into a block, v2 appears at distance 1 + δ̂1 from the
root of that block, where δ̂1 is distributed like ΔC . Likewise, when v2 bursts into a block,
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v3 appears at distance 1 + δ̂2 from the root of that block, where δ̂2 is distributed like ΔC ,
and so forth along that path. It is clear that

Hn ≥ (1 + δ̂1) + (1 + δ̂2) + · · · + (1 + δ̂Ĥn
) = Ĥn +

Ĥn∑
i=1

δ̂i,

where δ̂i, for i = 1, . . . , Ĥn are all independent.1

Let us scale this relation by lnn. In the scaled equation, the term Ĥn/ lnn on the right-
hand side converges almost surely to e, in accordance with Pittel’s result (see (4.8)). By the
strong law of large numbers

1
Ĥn

Ĥn∑
i=1

δ̂i
a.s.−→ E[ΔC ].

Combining the latter two convergence relations we see that

Hn

lnn
≥ Ĥn

lnn
+

⎛
⎝ 1
Ĥn

Ĥn∑
i=1

δ̂i

⎞
⎠× Ĥn

lnn
a.s.−→ e+ E[ΔC ] e.

This establishes the required a.s. lower bound.
Let us label the nodes of the bursting recursive tree according to their time order of

appearance. For example, the root is labeled 1, the second node is labeled 2, etc.2 Suppose
node i in the recursive tree is at depth D̂i, the jth node in the path from the root to node
i in the recursive trees bursts into a block in which the next node down the same path is
adjoined to a node at depth δ̂(i)j . Then, the height of the blocks tree is bounded above:

Hn ≤ max
1≤i≤n

{
(1 + δ̂

(i)
1 ) + (1 + δ̂

(i)
2 ) + · · · + (1 + δ̂

(i)

D̂i
)
}
.

Note that several of the variables δ̂(j)i are shared in the argument of the max function.
Along one path, say to node i, δ̂(i)j , j = 1, . . . , D̂i are independent. However, some of these
variables on different paths are dependent, in view of the sharing mentioned. We have the
representation

Hn ≤ max
1≤i≤n

{
D̂i + δ̂

(i)
1 + δ̂

(i)
2 + · · · + δ̂

(i)

D̂i

}
≤ max

1≤i≤n
D̂i + max

1≤i≤n

{
δ̂
(i)
1 + δ̂

(i)
2 + · · · + δ̂

(i)

D̂i

}
≤ Ĥn + max

1≤i≤n

{
δ̂
(i)
1 + δ̂

(i)
2 + · · · + δ̂

(i)

Ĥn

}
,

where δ̂(i)
D̂i+1

, . . . , δ̂
(i)

Ĥn
are additional independent random variables padded at the end to

make all the expressions of the same length. By the strong law of large numbers, we have

1 Note that this is only an inequality, because the highest node in the blocks tree may not necessarily
come from the bursting of (one of) the highest nodes in the recursive tree, as they may burst into some
of the blocks among the shortest in the collection. It may rather come from the bursting of a node in the
recursive tree near the highest level, but bursting into one of the taller blocks in the collection.

2 This is the usual labeling of a standard recursive trees, and renders the root-to-leaf labels in increasing
order. The recursive tree has been studied from the vantage point of the increasing trees [2].
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almost surely

Hn

lnn
≤ Ĥn

lnn
+ max

1≤i≤n

⎧⎨
⎩
δ̂
(i)
1 + δ̂

(i)
2 + · · · + δ̂

(i)

Ĥn

lnn

⎫⎬
⎭

≤ e+ eE[ΔC ] + o(1),
a.s.−→ e

(
1 + E[ΔC ]), a.s.

Combining the two bounds, the result follows. �
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