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We analyze the asymptotic number of items chosen in a selection procedure. The
procedure selects items whose rank among all previous applicants is within the best
100p percent of the number of previously selected items. We use analytic methods
to obtain a succinct formula for the first-order asymptotic growth of the expected
number of items chosen by the procedure.

1. INTRODUCTION

This study responds to Krieger, Pollak, and Samuel-Cahn [2], which analyzes a selec-
tion rule in which a number of items are sequentially observed. Some of the items
are retained; the others are permanently discarded. None are revisited. The values of
the first n items are random variables X1, X2, . . . , Xn, such that the n! orderings are
equally likely (no ties allowed). The selection procedure only utilizes the relative rank
of the random variables. The random variable of interest is Ln, the number of the first
n items that are retained.
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As in [2], “‘better’ is equivalent to ‘smaller’”. Inheriting their notation, we let Rn
i

be the rank of the ith item among the first n items, that is,

Rn
i :=

n∑
j=1

I{Xj ≤ Xi} = #{j | Xj ≤ Xi, with 1 ≤ j ≤ n},

where I{A} is an indicator for event A. The first item is always retained, so L1 = 1.
For n ≥ 2, the nth item is retained if its rank among the first n applicants is within the
best 100p percent of Ln−1, that is, if Rn

n ≤ �pLn−1�. (The value 0 < p ≤ 1 is fixed.)
We illustrate the first few cases

1. Since L1 = 1, and �pL1� = 1, item 2 is retained iff R2
2 = 1, that is, when

X2 < X1. So P(L2 = 2) = P(L2 = 1) = 1/2.

2a. If L2 = 1, we have �pL2� = 1, so item 3 is retained iff R3
3 = 1, that is, if X3 <

min{X1, X2}. So P(L3 = 2 | L2 = 1) = 1/3, and P(L3 = 1 | L2 = 1) = 2/3.

2b. If L2 = 2:
(a) For 0 < p ≤ 1/2, we have �pL3� = 1, so item 3 is retained iff R3

3 = 1,
that is, if X3 < min{X1, X2}. So P(L3 = 3 | L2 = 2) = 1/3 and P(L3 =
2 | L2 = 2) = 2/3.

(b) For 1/2 < p ≤ 1, we have �pL3� = 2, so item 3 is retained iff R3
3 is 1 or

2, that is, if X3 ≯ max{X1, X2}. So P(L3 = 3 | L2 = 2) = 2/3 and P(L3 =
2 | L2 = 2) = 1/3.

Another way to view a recursive definition of the Ln’s is given in (2) of Section 4.

2. MOTIVATION

The first main result proved by Krieger et al. [2] is that, for 0 < p ≤ 1, there exists a
constant cp > 0 such that E(Ln)/np → cp as n → ∞ (Theorem 4.1 of [2]). Krieger
et al. only state c1 = 1/2; they do not give any other values of cp. Furthermore, they
state, on page 366 of [2], that “It seems impossible to determine cp analytically, except
for p = 1.” In this study, however, we accomplish this task: We use analytic methods
to reveal the values cp for all p.

Krieger et al. also used the simulation to estimate the values of cp, but several
of these estimations were inaccurate; we give precise values for all cp in this report.
When p is rational, we can use symbolic algebra to evaluate the cp.

3. MAIN RESULTS

Theorem 1: As n → ∞, we have E(Ln)/np → cp, where

cp =
1 + ∑

k≥1
�pk�−pk

�pk�
∏k

j=1
1

1+ p
�pj�

(p + 1)�(p + 1)
. (1)
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TABLE 1. Some representative values of cp

p cp

1
1

2

1/2
2
√

π

3

1/3
π2

3(�(2/3))2

2/3
21/3π

√
3

5�(2/3)

1/4

√
2π3

10(�(3/4))3

3/4
4π31/4

√
2

21�(3/4)

1/5
16π4

375(�(4/5))4(3 − √
5)

2/5
4π3/2(

√
5 + 1)23/5�(7/10)

7(
√

5 − 1)(5 + √
5)(�(4/5))2

3/5
5π33/10�(3/5)

12�(8/15)�(2/3)

4/5
5�(1/5)22/5

36

1/6
4π5

189(�(5/6))5

5/6
12π51/6

55�(5/6)

When p ∈ Q, for example, p = r/s, then cp has a form we can symbolically evaluate:

cp = 1 + ∑
�≥0

( ∏�
σ=1 μr,s(σ )

)( ∑s−1
b=1 νr,s(�, b)

)
(p + 1)�(p + 1)

,

where μr,s(σ ) = ∏s
j=1

1
1+ p

(σ−1)r+�pj�
and νr,s(�, b) = �pb�−pb

r�+�pb�
∏b

i=1
1

1+ p
r�+�pi�

.

This theorem yields succinct values of cp. To demonstrate the intimate relation
to the Gamma function, we list several cp’s in Table 1.

In Table 2, we improve upon the values from Table 1 of Krieger et al. [2]. (Their
values cover the case n = 10,000, and our values correspond to the asymptotic case,
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TABLE 2. Values of cp (compare with Table 1 of [2], which lists values for n = 10,000)

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

cp 5.803 2.961 2.193 1.671 1.182 1.202 1.048 0.841 0.693 0.500

0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
6

p

c_
p

FIGURE 1. Values of cp for p = j/1, 000, where 100 ≤ j ≤ 1, 000.

that is, as n → ∞.) In Figure 1 we graph cp. [We conjecture cp is continuous at each
irrational p but only left-continuous (not right-continuous) at each rational p.]

4. LEMMAS AND PROOFS

The Ln’s are defined recursively, as in Lemma 2.1(i) of [2]:

L1 = 1 and Ln+1 =
{

Ln + 1 with probability �pLn�/(n + 1),

Ln otherwise.
(2)

In particular, Ln is an integer-valued random variable with mass on [1, n].
For succinctness, we use the notation

Pn,k := P(Ln = k).

We use generating functions as a key tool in the proofs. Thus, we define

g(z) =
∑
n≥1

E(Ln)z
n and f (z) =

∑
n≥1

E(�pLn� − pLn)z
n.
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The fundamental recurrence is that L1 = 1 and, for n > 1,

Pn+1,k+1 = �pk�
n + 1

Pn,k +
(

1 − �p(k + 1)�
n + 1

)
Pn,k+1. (3)

Lemma 2: For each n ≥ 1,

E(Ln+1) − E(Ln) = pE(Ln) + E(�pLn� − pLn)

n + 1
.

Proof of Lemma 2: The lemma basically follows from the fundamental recurrence
given in (3). The recurrence gives

E(Ln+1) − E(Ln) =
∑

k

(kPn+1,k − kPn,k) =
∑

k
(�p(k − 1)�Pn,k−1 − �pk�Pn,k

)
n + 1

.

We can shift the values of k by 1 in the first part, to obtain

E(Ln+1) − E(Ln) =
∑

k

(
(k + 1)�pk�Pn,k − k�pk�Pn,k

)
n + 1

=
∑

k�pk�Pn,k

n + 1
.

The numerator is E(�pLn�), so the lemma follows. �

We turn Lemma 2 into a differential equation, using generating functions.
Multiplying by zn+1, summing over n ≥ 1, and differentiating yields

(1 − z)g′(z) − 1 = (p + 1)g(z) + f (z).

Noting that g(0) = 0, this differential equation has solution

g(z) =
∫ z

0 (1 + f (t))(1 − t)p dt

(1 − z)p+1
.

We handle g(z) with analytic methods, that is, with z ∈ C, as espoused in [1,3]. Since
f (t) has real-valued coefficients between 0 and 1, then

∫ z
0 (1 + f (t))(1 − t)pdt does not

have singularities that are strictly inside the unit circle in C. Also,
∫ 1

0 (1 + f (t))(1 −
t)p dt is a constant (to be determined below). Thus, the singularity of g(z) at z = 1
is a pole of order p + 1; any other singularity located directly on the boundary of
the unit circle could only be a pole of order 1 or less. Thus, the singularity at z = 1
completely determines the first-order asymptotic growth of the coefficients in the
Maclaurin representation of g(z). This is the result of Krieger et al., namely

E(Ln)/np ∼ cp,
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but we have the additional fact that

cp =
∫ 1

0 (1 + f (t))(1 − t)p dt

�(p + 1)
.

Of course
∫ 1

0 (1 − t)p dt = 1
p+1 , so cp = 1

(p+1)�(p+1)
+

∫ 1
0 f (t) (1−t)p dt

�(p+1)
. The Maclaurin

series of (1 − t)p is (1 − t)p = ∑
n≥0

�(n−p)

�(−p)�(n+1)
tn, and thus

f (t)(1 − t)p =
∑
k≥1

(�pk� − pk)
∑
m≥1

Pm,k

∑
n≥0

�(n − p)

�(−p)�(n + 1)
tn+m.

Next we evaluate the corresponding definite integral

∫ 1

0
f (t)(1 − t)p dt =

∑
k≥1

(�pk� − pk)
∑
m≥1

Pm,k

∑
n≥0

�(n − p)

�(−p)�(n + 1)

1

n + m + 1
.

To simplify, we note

∑
n≥0

�(n − p)

�(−p)�(n + 1)

1

n + m + 1
= m!�(p + 1)

�(m + p + 2)
,

and thus

cp = 1

(p + 1)�(p + 1)
+

∑
k≥1

(�pk� − pk)
∑
m≥1

m!Pm,k

�(m + p + 2)
. (4)

Lemma 3: For k > 1,

Pm,k = �p(k − 1)�
∑
n<m

Pn,k−1

n + 1

m∏
�=n+2

(
1 − �pk�

�

)
.

Proof of Lemma 3: If Lm = k, there must be a largest value n < m such that Ln =
k − 1. Since n is the largest such value, L� = k for n < � ≤ m. Thus

Pm,k = P(Lm = k)

=
∑
n<m

P(Ln = k − 1)P(Ln+1 = Ln+2 = · · · = Lm = k | Ln = k − 1)

=
∑
n<m

Pn,k−1
�p(k − 1)�

n + 1

m∏
�=n+2

(
1 − �pk�

�

)
.

Factoring out �p(k − 1)� completes the proof of the lemma. �
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Corollary 4: For k > 1, we have

∑
m≥1

m!Pm,k

�(m + p + 2)
= �p(k − 1)�

�pk� + p

∑
n≥1

n!Pn,k−1

�(n + p + 2)
.

Proof of Corollary 4: By Lemma 3,

∑
m≥1

m!Pm,k

�(m + p + 2)
=

∑
m≥1

m!�p(k − 1)� ∑
n<m

Pn,k−1

n+1

∏m
�=n+2

(
1 − �pk�

�

)
�(m + p + 2)

= �p(k − 1)�
∑
n≥1

Pn,k−1

n + 1

∑
m>n

m! ∏m
�=n+2

(
1 − �pk�

�

)
�(m + p + 2)

= �p(k − 1)�
∑
n≥1

Pn,k−1

n + 1

(n + 1)!
(�pk� + p)�(n + p + 2)

.

This completes the proof of the corollary. �

Applying Corollary 4, a total of k − 1 times to (4) yields

cp = 1

(p + 1)�(p + 1)
+

∑
k≥1

(�pk� − pk)

( k∏
j=2

�p(j − 1)�
�pj� + p

) ∑
m≥1

m!Pm,1

�(m + p + 2)
.

(5)
Simplifying, we have

k∏
j=2

�p(j − 1)�
�pj� + p

= 1 + p

�pk�
k∏

j=1

�pj�
�pj� + p

= 1 + p

�pk�
k∏

j=1

1

1 + p
�pj�

. (6)

Also Lm = 1 iff the 2nd, 3rd, … , mth items are not retained, so

Pm,1 =
m∏

j=2

(
1 − �p�

j

)
=

m∏
j=2

(
1 − 1

j

)
= 1/m.

So ∑
m≥1

m!Pm,1

�(m + p + 2)
=

∑
m≥1

(m − 1)!
�(m + p + 2)

= 1

(p + 1)2�(p + 1)
. (7)

Substituting (6) and (7) into (5) gives (1), the main equation of the theorem. Finally,
in the rational case, p = r/s, so we simplify (1) by grouping the numerator’s terms
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according to the value of k mod s. Writing k = �s + b yields

�pk� − pk = �p(�s + b)� − p(�s + b) = r� + �pb� − r� − pb = �pb� − pb.

So ∑
k≥1

�pk� − pk

�pk�
k∏

j=1

1

1 + p
�pj�

=
s−1∑
b=1

∑
�≥0

�pb� − pb

r� + �pb�
�s+b∏
j=1

1

1 + p
�pj�

and

�s+b∏
j=1

1

1 + p
�pj�

=
( �s∏

j=1

1

1 + p
�pj�

)( �s+b∏
i=�s+1

1

1 + p
�pi�

)

=
( �∏

σ=1

s∏
j=1

1

1 + p
(σ−1)r+�pj�

)( b∏
i=1

1

1 + p
r�+�pi�

)
.

Defining μr,s(σ ) and νr,s(�, b) as in the theorem statement, and substituting, yields
Theorem 1.
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