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On the Number of 2-Protected Nodes in Tries
and Suffix Trees
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We use probabilistic and combinatorial tools on strings to discover the average number of 2-protected nodes in tries
and in suffix trees. Our analysis covers both the uniform and non-uniform cases. For instance, in a uniform trie with n

leaves, the number of 2-protected nodes is approximately 0.803n, plus small first-order fluctuations. The 2-protected
nodes are an emerging way to distinguish the interior of a tree from the fringe.
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1 Introduction
A node in a tree is classified as k-protected if the distance (measured in edges) from the node to each
descendant that is a leaf is at least k. For instance, any node that is not a leaf is 1-protected. In this paper,
we study 2-protected nodes, namely, those nodes that have distance at least 2 from each leaf in the tree.
I.e., 2-protected nodes are neither leaves nor parents of any leaf.

In a recent flurry of papers, several authors have investigated the behavior of 2-protected nodes:

• Cheon and Shapiro [2008] analyzed the average number of 2-protected nodes in unlabeled, ordered
(planar) trees. The average portion of 2-protected nodes in such trees approaches 1/6 as the number
of leaves grows arbitrarily large. In {0, 1, 2}-trees, also known as Unary-Binary or Motzkin trees,
the average portion of 2-protected nodes approaches 10/27 as the number of leaves increases.

• Mansour [2011] studied the number of 2-protected nodes in k-ary trees, i.e., in unlabeled, ordered
(planar) trees for which each internal node has exactly k children. He proved that the total number of
2-protected nodes in all k-ary trees with n internal nodes approaches n/kk, for fixed k, as n→∞.
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• Du and Prodinger [2012+] analyzed the average number of 2-protected nodes in digital search trees
(DSTs). They studied the case where the branching is unbiased. They utilized q-series to prove
that the average number of 2-protected nodes in a DST built over n strings is (0.307 . . .)(n), plus a
fluctuating function of log n with small amplitude (on the order of 10−5).

• Mahmoud and Ward [2012+] derived the limiting properties for the number of 2-protected nodes in
binary search trees corresponding to permutations grown from uniformly chosen random permuta-
tions. They also derived exact expressions for the kth moment of the number of 2-protected nodes
in binary search trees, for arbitrarily large k.

We are motivated to study 2-protected nodes because they provide a new method of classification of a
node as either: near the fringe (not 2-protected) or away from the fringe of the tree (2-protected).

2 Two-Protected Nodes in Tries
2.1 Definitions
We restrict attention to tries built over binary strings, although we emphasize that the methodology used
here is applicable, with only slight generalizations of the ideas, to tries built over strings with letters from
a larger alphabet. Let A = {a, b} denote the binary alphabet. When building a trie over a collection
of strings, a recursive filtering process occurs, by which each string is placed at the location in the trie
corresponding to its shortest unique prefix, as compared to the other strings in the collection. Thus, if C
is a collection of strings with letters from A, then: (1) If C is empty, then there is no corresponding node
in the trie; (2) If C has one string, then the corresponding node in the trie is a leaf; and (3) If C has two or
more strings, then the splitting process at the analogous node at level j of the tree occurs according to the
jth letter of the strings in C.
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The trie is built from the strings:
Y1,1Y1,2Y1,3 . . . = a, b, a, b, a, a, b, a, a . . .

Y2,1Y2,2Y2,3 . . . = b, b, b, a, a, a, b, a, b . . .

Y3,1Y3,2Y3,3 . . . = b, a, b, a, b, b, a, a, b . . .

Y4,1Y4,2Y4,3 . . . = a, a, a, b, a, b, b, b, a . . .

Y5,1Y5,2Y5,3 . . . = b, b, b, a, a, b, a, b, a . . .

Y6,1Y6,2Y6,3 . . . = b, a, b, b, b, b, a, a, a . . .

Y7,1Y7,2Y7,3 . . . = a, a, a, b, a, a, b, b, a . . .

Y8,1Y8,2Y8,3 . . . = a, a, a, a, a, b, b, b, a . . .

Y9,1Y9,2Y9,3 . . . = b, b, b, a, b, a, a, a, a . . .

Fig. 1: Example of a trie built from 9 independent strings; 2-protected nodes in bold.

To give an analogous probability model to the splitting process above, we use p and q := 1 − p, with
p ≥ q, as the probabilities of a string splitting to the left or right, respectively. In a trie, each string is
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generated separately. Moreover, we assume independence within each string, i.e., from letter to letter.
Without loss of generality, we define P (a) = p and P (b) = q. If the rth string is Yr,1Yr,2Yr,3 . . ., and if
(c1, c2, c3, . . . , ck) is a specific ordered k-tuple with exactly j occurrences of “a” and k − j occurrences
of “b”, then

P (Yr,1Yr,2Yr,3 . . . Yr,k = c1c2c3 . . . ck) = pjqk−j . (1)

This probability model for the strings induces a unique probability model for the analogous tries built over
collections of strings.

Again, a node in a trie is 2-protected if it is neither a leaf nor the parent of a leaf. For example, in
Figure 1, there are 9 leaves, 6 internal nodes which are parents of leaves (so not 2-protected), and 7 other
nodes, which are 2-protected.

Let T (T (I)
n ) denote the number of 2-protected nodes in a trie T (I)

n built over n strings, according to the
probability model above. (An “(I)” shows that we are working with 2-protected nodes in tries built over
independent strings. Later, we use “(S)” when working with suffix trees.)

Let Xw(T (I)
n ) = 1 if the node corresponding to a word w in a trie built over n node is 2-protected;

or Xw(T (I)
n ) = 0 otherwise. For instance, for the tree T (I)

n from Figure 1, we have Xw(T (I)
n ) = 1,

for w ∈ {e, aa, aaab, b, ba, bb, bbb} (where “e” denotes the empty word), and Xw(T (I)
n ) = 0 otherwise.

Then
T (T (I)

n ) =
∑
w∈A∗

Xw(T (I)
n ), (2)

where A∗ is the collection of finite-length strings, with letters from A. For succinct notation, we define
T

(I)
n := T (T (I)

n ) and X(I)
n,w := Xw(T (I)

n ).

2.2 Main Results for Tries
We work in a Poissonized model to perform the analysis in Section 3 (see Szpankowski [2001]). Thus,
instead of working with tries of fixed size n, we want to sample from a Poisson random variable Nz with
average z, and then, conditioned on the value of Nz , we analyze the number of 2-protected nodes in a trie
of size Nz . Let g(z) := E(T

(I)
Nz

). We will prove the following:

Theorem 2.1 Let g(z) be the number of 2-protected nodes in a trie built from a collection of Nz indepen-
dent strings, where Nz is Poisson with mean z. Let h = −p ln p − (1 − p) ln (1− p) denote the entropy
of the source. Then, for some ε > 0, we have

g(z) =

(
pq + 1

h
− 1

)
z − 1 + δ(log z)z +O(z−ε),

where δ is a fluctuating function of small magnitude when ln p
ln q is rational, and δ converges to 0 otherwise.

Corollary 2.1 In a trie built from a Poisson number Nz of strings, where the branching to the left-and-
right in the tree are equally likely (i.e., p = q = 1/2), the number of 2-protected nodes is

g(z) =

(
5

4 ln 2
− 1

)
z + δ(log z)z − 1 +O(z−ε).
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Since 5
4 ln 2−1 = 0.8033688 . . ., then in a uniform trie with n leaves, there are approximately 0.8033688n

two-protected nodes, on average, when the trie is built over a set containing a Poisson number of strings.
This is smaller than the number of internal nodes in a trie in the uniform case, namely, n/h ≈ 1.44n,
where h = ln 2 is the entropy of a uniform two-letter source.

Corollary 2.2 Since g(z) = E(T
(I)
Nz

) grows linearly, Theorem 2.1, along with the Depoissonization The-

orem 10.4 of Szpankowski [2001], yields that the expected number of nodes, E(T
(I)
n ), in a trie built over

n independent strings, also has the same asymptotic growth, up to order O(1). In other words,

E(T (I)
n ) =

(
pq + 1

h
− 1

)
n+ δ(log n)n+O(1).

3 Proofs for Tries
By the linearity of expectation, we have

g(z) =
∑
w∈A∗

E(X
(I)
Nz,w

).

A key observation is that X(I)
Nz,w

= 1 if and only if two or more of the strings inserted in the trie start with
wa, and/or two or more of the strings inserted in the trie start with wb. A Poisson number of strings start
with wa, and an independent Poisson number of strings start with wb. Thus

E(X
(I)
Nz,w

) =1− P (wa)ze−P (wa)z − P (wb)ze−P (wb)z

+ P (wa)ze−P (wa)zP (wb)ze−P (wb)z − e−P (wa)ze−P (wb)z

We observe e−P (wa)ze−P (wb)z = e−P (w)z . Now we consider the Mellin transform

g∗(s) :=

∫ ∞
0

g(z)zs−1dz

of the function g(z). (See Flajolet et al. [1995], Flajolet and Sedgewick [1995, 1996], Szpankowski
[2001].) Since −P (w)z + P (wa)z + P (wb)z = 0, we can add this term into E(X

(I)
Nz,w

). Notice 1 −
P (w)z− e−P (w)z and P (wa)z−P (wa)ze−P (wa)z and P (wb)z−P (wb)ze−P (wb)z each have a Mellin
strip of 〈−2,−1〉. Also, P (wa)ze−P (wa)zP (wb)ze−P (wb)z has a Mellin strip of 〈−2,∞〉. Thus, the
Mellin of g(z) is valid for s in the strip 〈−2,−1〉, i.e., for s with −2 < <(s) < −1. Thus, in this strip,
we have

g∗(s) =
∑
w∈A∗

(P (w))−s(pqs(s+ 1)− p−ss− q−ss− 1)Γ(s) =
(pqs(s+ 1)− p−ss− q−ss− 1)Γ(s)

1− p−s − q−s
.

The pole at s = −1 is simple, because the expression in the numerator to the left of Γ(s) is 0 at s = −1.
We retrieve the asymptotics g(z) = E(T

(I)
Nz

) by integrating clockwise around a large rectangle with sides
C1, C2, C3, C4, where C1 goes from −3

2 − iA to − 3
2 + iA; C2 goes from − 3

2 + iA to M + iA; C3 goes
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from M + iA to M − iA; and C3 goes from M − iA to −32 − iA. The inverse Mellin transform yields

g(z) =
1

2πi

∫ − 3
2+i∞

− 3
2−i∞

g∗(s)z−sds

= lim
A→∞

∑
−Res[g∗(s)z−s; s = a`]− lim

A→∞

1

2πi

(∫
C2

+

∫
C3

+

∫
C4

)
g∗(s)z−sds,

where the sum is taken over all poles a` of g∗(s)z−s in the region bounded by C1 ∪ C2 ∪ C3 ∪ C4.
If ln p

ln q is rational, say ln p
ln q = r/t, then the singularities of g∗(s)z−s in the region above are found at

s` = −1 + 2`rπi
ln p and at s = 0. As in other studies making comparisons between tries and suffix trees,

e.g., Jacquet and Szpankowski [1994, 2005], we have first-order fluctuations in the asymptotic average
number of 2-protected nodes when ln p

ln q is rational, but no such fluctuations when ln p
ln q is irrational. The

residue of g∗(s)z−s at s = −1 is

Res
s=−1

g∗(s)z−s =

(
1 +

p2 + q2 − 3

2h

)
z,

where h = −p ln p− (1− p) ln (1− p) is the entropy of the source. The residue of g∗(s)z−s at s = 0 is

Res
s=0

g∗(s)z−s = 1.

The residues from the other singularities only yield small fluctuations, and these fluctuations are only
present in the case where ln p

ln q is rational. See Flajolet et al. [2010] for more details about the general
phenomenon. This completes the proof of Theorem 2.1.

4 Two-Protected Nodes in Suffix Trees
We next make comparisons between the average number of nodes in tries and suffix trees. Our methods
continue to be applicable beyond the binary setting, but for conciseness of the presentation, we treat
strings built over the alphabet A = {a, b}. The letters a and b again correspond to the probabilities p and
q in the probability model. We let S = X1X2X3 . . . denote a sequence of letters drawn independently
from A. We take a collection of suffixes from S by defining the jth suffix as

Sj = XjXj+1Xj+2 . . . .

Thus, the jth suffix is the same sequence of characters as S, except that the first j − 1 characters are
removed. Then we build a trie structure from the collection of the first n suffixes of S, namely, Cn :=
{S1,S2, . . . ,Sn}. The entire stochastic structure of the tree depends completely upon the stochastic
structure of the string S from which all of the suffixes are drawn. Again, a node in a trie is 2-protected if
it is neither a leaf nor the parent of a leaf.

4.1 Main Result for Suffix Trees
Our main result is that, up to a difference of O(nε), suffix trees have the same average number of 2-
protected nodes as tries, when the probability model (i.e., the values of p and q = 1 − p) is the same.
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Theorem 4.1 A suffix tree built from the first n suffixes of a common string has an average E(T
(S)
n ) of

2-protected nodes, where

E(T (S)
n ) =

(
pq + 1

h
− 1

)
n+ δ(log n)n+O(nε)

where ε only needs to satisfy ε > 1 − 1
2
log(p)
log(q) , and δ is fluctuating or converging to 0, depending on

whether ln p
ln q is rational or irrational, respectively.

4.2 Proofs for Suffix Trees
The proof of Theorem 4.1 spans the rest of the paper. Our notation is inherited from Régnier and Denise
[2004], Jacquet and Szpankowski [2005]. These methods have early origins in Guibas and Odlyzko [1978,
1981a,b]. For each string w ∈ A∗, we define

Rw = {σ | σ has exactly one occurrence of w, which is at the right end};
Uw = {σ | wσ has exactly one occurrence of w, which is at the left end}.

As in Régnier and Denise [2004], we now consider languages that depend on two words. We define

R̃wa = {σ | σ has exactly one wa, which is at the right end, and has no wb’s};
Mwa,wb = {σ | waσ has exactly one wa, which is at the left end,

and exactly one wb, which is at the right end}.

Ũwa = {σ | waσ has exactly one wa, which is at the left end, and has no wb’s}.

For each language L, we define L(z) =
∑
σ P (σ)z|σ| as the analogous generating function, where P (σ)

is the binomial probability defined as in (1).
We define the autocorrelation set Aw of a word w as the set of all strings σ that are both a prefix and a

suffix of w. Then Sw(z) =
∑
σ∈Aw P (σ)z|σ| is the autocorrelation polynomial of w. Similarly, for any

two words w and v of the same length, we define Aw,v as the set of all strings σ that are both a prefix
of v and a suffix of w. Then Sw,v(z) =

∑
σ∈Aw,v P (σ)z|σ| is the correlation polynomial of the ordered

pair w, v. We note that Sw,w(z) = Sw(z), i.e., the correlation polynomial of w with itself is equal to the
autocorrelation polynomial of w. For any word w, we define a matrix Dw(z) that will play a fundamental
role in the analysis that follows. We define

Dw(z) := (1− z)
[
Swa,wa(z) Swa,wb(z)
Swb,wa(z) Swb,wb(z)

]
+

[
P (wa)z|wa| P (wb)z|wb|

P (wa)z|wa| P (wb)z|wb|

]
.

4.3 Generating Function for Average Number of 2-Protected Nodes in a Suffix
Tree

Each node in a suffix tree corresponds naturally to a string w that describes the path from the root of the
suffix tree to the node. To determine when w’s node in the suffix tree will be 2-protected, we instead
consider the complement, i.e., when would the node corresponding to w fail to be 2-protected? This
happens when
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• neither wa nor wb occurs within the first n+ (|w|+ 1)− 1 = n+ |w| characters, or

• exactly one copy of wa occurs within the first n+ (|w|+ 1)− 1 = n+ |w| characters, or

• exactly one copy of wb occurs within the first n+ (|w|+ 1)− 1 = n+ |w| characters.

The second and third conditions have one possible overlap, i.e., that there are exactly one copy of wa and
exactly one copy of wb. The first condition can be simplified, i.e., there is no occurrence of w within the
first n+ |w| − 1 characters. So, the probability that the node corresponding to w is 2-protected is:

P (w is 2-protected) = 1− [zn+|w|−1]

(
1

1− z
−Rw(z)

1

1− z

)
− [zn+|w|] (Rwa(z)Uwa(z) +Rwb(z)Uwb(z))

+ [zn+|w|]
(
R̃wa(z)Mwa,wb(z)Ũwb(z) + R̃wb(z)Mwb,wa(z)Ũwa(z)

)
Let T (S)

n = T (T (S)
n ) be the number of 2-protected nodes in a suffix tree T (S)

n , built from the first n
suffixes of a randomly-generated string. The expected value of T (S)

n is found by summing over all w’s,
i.e.,

E(T (S)
n ) =

∑
w∈A∗

(
1− [zn+|w|−1]

(
1

1− z
−Rw(z)

1

1− z

)
− [zn+|w|] (Rwa(z)Uwa(z) +Rwb(z)Uwb(z))

+ [zn+|w|]
(
R̃wa(z)Mwa,wb(z)Ũwb(z) + R̃wb(z)Mwb,wa(z)Ũwa(z)

))
.

Using Jacquet and Szpankowski [2005] (p. 339) and Régnier and Denise [2004] (p. 195, 204), we get

E(T (S)
n ) = [zn]

∑
w∈A∗

P (w)

(
z

(1− z)Dw(z)
− pz

(Dwa(z))2
− qz

(Dwb(z))2

+ (pz(Dw(z)−1)1,1 + qz(Dw(z)−1)2,1)(−(1− z)(Dw(z)−1)1,2)((Dw(z)−1)2,1 + (Dw(z)−1)2,2)

+ (pz(Dw(z)−1)1,2 + qz(Dw(z)−1)2,2)(−(1− z)(Dw(z)−1)2,1)((Dw(z)−1)1,1 + (Dw(z)−1)1,2)

)
.

(3)

Referring back to Dw, and using the equations

det(Dw(z)) = (1− z)Dw(z);

Swa,wb(z) =
P (b)

P (a)
(Swa,wa(z)− 1), (and analogously when wa and wb are flipped);

Swa,wa(z) + Swb,wb(z) = Sw(z) + P (w)z|w| + 1;

Dw(z) = Dwa(z) +Dwb(z)− (1− z);

we can simplify the last two lines of (3) into

P (w)z

Dw(z)3

(
Dwa(z)(qSwa(z)− pSwb(z) + p) +Dwb(z)(pSwb(z)− qSwa(z) + q)− (1− z)

)
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Thus, we get a generating function from (3) for E(T
(S)
n ), that naturally decomposes into three parts:

∑
n≥0

E(T (S)
n )zn = h

(S)
1 (z)− h(S)2 (z) + h

(S)
3 (z),

where

h
(S)
1 (z) :=

∑
w∈A∗

P (w)z

(1− z)Dw(z)
,

h
(S)
2 (z) :=

∑
w∈A∗

P (w)

(
pz

(Dwa(z))2
+

qz

(Dwb(z))2

)
=

∑
w∈A∗,|w|≥1

P (w)z

(Dw(z))2
,

h
(S)
3 (z) :=

∑
w∈A∗

P (w)z

Dw(z)3

(
Dwa(z)(qSwa(z)− pSwb(z) + p) +Dwb(z)(pSwb(z)− qSwa(z) + q)− (1− z)

)
.

4.4 (Ordinary) Generating Function for Average Number of 2-Protected Nodes
in a Trie

Although we already derived exponential and Poissonized generating functions for the average number of
2-protected nodes in a trie, now we need a version that is an ordinary generating function, so that we can
compare to the OGF derived above in the suffix tree case. We again use the notations T (I)

n and X(I)
n,w from

end of Section 2.1. The probability that, in a trie built over n independently-generated strings, the node
corresponding to w is 2-protected is

E(X(I)
n,w) = 1− (1− P (w))n − nP (wa)(1− P (wa))n−1 − nP (wb)(1− P (wb))n−1

+ nP (wa)(n− 1)P (wb)(1− P (w))n−2.

Thus the expected value of T (I)
n is found by summing over all w’s, i.e.,

E(T (I)
n ) =

∑
w∈A∗

(
1− (1− P (w))n − nP (wa)(1− P (wa))n−1 − nP (wb)(1− P (wb))n−1

+ nP (wa)(n− 1)P (wb)(1− P (w))n−2
)

This yields a generating function for E(T
(I)
n ), that also naturally decomposes into three parts:

∑
n≥0

E(T (I)
n )zn = h

(I)
1 (z)− h(I)2 (z) + h

(I)
3 (z),
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where

h
(I)
1 (z) :=

∑
w∈A∗

∑
n≥0

(1− (1− P (w))n)zn =
∑
w∈A∗

P (w)z

(1− z)(1− z(1− P (w)))
,

h
(I)
2 (z) :=

∑
w∈A∗

∑
n≥0

(
nP (wa)(1− P (wa))n−1 + nP (wb)(1− P (wb))n−1

)
zn

=
∑

w∈A∗,|w|≥1

P (w)z

(1− z(1− P (w)))2
,

h
(I)
3 (z) =

∑
w∈A∗

∑
n≥0

nP (wa)(n− 1)P (wb)(1− P (w))n−2zn =
∑
w∈A∗

2P (wa)P (wb)z2

(1− z(1− P (w)))3
.

So, finally, it suffices to compare the coefficients of zn in h(S)j (z)−h(I)j (z) in the three cases, j = 1, 2, 3.
The next lemma, from Jacquet and Szpankowski [1994, 2005], shows that the autocorrelation polyno-

mial of a word is, with high probability, equal to 1 plus terms of relatively large powers and thus small
probabilities. We use the notation [[A]] = 1 if A occurs, and [[A]] = 0 otherwise.

Lemma 4.1 Consider θ = (1− pρ)−1, δ =
√
p, and ρ > 1 with ρδ < 1. Then∑

w∈Ak
[[ |Sw(ρ)− 1| ≤ (ρδ)kθ ]]P (w) ≥ 1− θδk .

Lemma 4.2 Let δ =
√
p ; use again the ρ > 1 from Lemma 4.1, i.e., such that ρδ < 1. Consider

Dw(z) = (1− z)Sw(z) +P (w)zm, where Sw(z) is the autocorrelation polynomial of w. There exists an
integer K such that, for each |w| ≥ K, the polynomial Dw(z) has exactly one root in the disk |z| ≤ ρ.

We often refer to this K throughout the rest of the proofs below. We also let Aw denote this unique root.
We write B(1)

w = D′w(Aw), B(2)
w = D′′w(Aw) and B(3)

w = D′′′w (Aw). We use bootstrapping, to get

Aw = 1 +
1

Sw(1)
P (w) +O(|w|P (w)2) ,

B(1)
w = −Sw(1) +

(
|w| − 2S′w(1)

Sw(1)

)
P (w) +O(|w|2P (w)2) ,

B(2)
w = −2S′w(1) +

(
−|w|+ |w|2 − 3S′′(1)

Sw(1)

)
P (w) +O(|w|3P (w)2) (4)

B(3)
w = −3S′′w(1) +

(
2|w| − 3|w|2 + |w|3 − 4S′′′w (1)

Sw(1)

)
P (w) +O(|w|4P (w)2) (5)

Lemma 4.3 Comparing h(S)1 and h(I)1 . Let ∆
(1)
n = [zn](h

(S)
1 (z) − h(I)1 (z)). Then ∆

(1)
n = O(nε) for

any ε > 1− 1
2
log p
log q .
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Proof. For a fixed string w ∈ A∗, with |w| ≥ K, the contribution from w to ∆
(1)
n is

1

2πi

∫
|z|=ρ

P (w)z

(1− z)

(
1

Dw(z)
− 1

1− z(1− P (w))

)
dz

zn+1

− Res
z=Aw

P (w)z

(1− z)Dw(z)

1

zn+1
+ Res
z=1/(1−P (w))

P (w)z

(1− z)(1− z(1− P (w)))

1

zn+1

− Res
z=1

P (w)z

(1− z)Dw(z)

1

zn+1
+ Res

z=1

P (w)z

(1− z)(1− z(1− P (w)))

1

zn+1
.

For fixed w ∈ A∗, to bound this integral, we note

|1−(1−P (w))z−Dw(z)| = |(1−z)(1−Sw(z))+P (w)z(1−z|w|−1)| ≤ (1+ρ)(Sw(ρ)−1)+(pρ)|w|.

Thus, the total contribution to ∆
(1)
n from the integrals, summed over all w ∈ A∗, and using Lemma 4.1, is

∣∣∣∣∣ ∑
w∈A∗

1

2πi

∫
|z|=ρ

P (w)z

(1− z)

(
1

Dw(z)
− 1

1− z(1− P (w))

)
dz

zn+1

∣∣∣∣∣ = O

(
1

|2π|
(2πρ)

∑
k≥0

(ρδ)k
1

ρn+1

)
= O(ρ−n).

The residues at z = 1 cancel perfectly; no approximation or estimate is needed:

−Res
z=1

P (w)z

(1− z)Dw(z)

1

zn+1
+ Res

z=1

P (w)z

(1− z)(1− z(1− P (w)))

1

zn+1
= 0.

Finally, to compare the terms with residues at z = Aw and z = 1/(1− P (w)), we have

− Res
z=Aw

P (w)z

(1− z)Dw(z)

1

zn+1
+ Res
z=1/(1−P (w))

P (w)z

(1− z)(1− z(1− P (w)))

1

zn+1

= − P (w)

(1−Aw)B
(1)
w Anw

+ (1− P (w))n. (6)

Thus, we define

fw(x) = − P (w)

(1−Aw)B
(1)
w Axw

+ (1− P (w))x,

so that the difference of the residues in (6) is fw(n). We also define fw(x) = fw(x) − fw(0). Thus, for
fixed k ≥ K, we see

∑
w∈Ak(fw(x)− fw(0)) decreases exponentially as x→∞, and is O(x) as x→ 0.
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Thus the Mellin transform
∑
w∈Ak f

∗
w(s) of

∑
w∈Ak(fw(x)− fw(0)) exists for s > −1, and we have∑

w∈Ak
f
∗
w(s) =

∑
w∈Ak

(
− P (w)

B
(1)
w (1−Aw)

∫ ∞
0

(
1

Axw
− 1

)
xs−1dx+

∫ ∞
0

((1− P (w))x − 1)xs−1dx

)

=
∑
w∈Ak

(
− P (w)

B
(1)
w (1−Aw)

Γ(s)(logAw)−s + Γ(s)

(
log

1

1− P (w)

)−s)

=
∑
w∈Ak

(
− Γ(s)

(
P (w)

Sw(1)

)−s
(1 +O(|w|P (w))) + Γ(s)P (w)−s(1 +O(P (w)))

)
=
∑
w∈Ak

P (w)−sΓ(s)
(
−(1/Sw(1))−s(1 +O(|w|P (w))) + (1 +O(P (w)))

)
=
∑
w∈Ak

P (w)−s−1Γ(s)

(
P (w)(Sw(1)−s − 1)

Sw(1)−s

)
O(1)

≤ (sup{q−<(s)−1, 1})k(ρδ)k|s|Γ(s)O(1) ,

where the last line follows from Lemma 4.1 and from |Sw(1)−s− 1| ≤ |s|θδk, when |Sw(1)−<(s)− 1| ≤
θδk.

We now take any c < log ρδ
log q . Then this value c necessarily satisfies

sup{q−(c−1)−1, 1}ρδ < q−
log ρδ
log q ρδ = (ρδ)−1(ρδ) = 1,

which in turn implies that g∗(s) is analytic for every s with <(s) ∈ (−∞, c−1). Then for arbitrary λ < c
we can take the inverse Mellin transform of g∗(s) along the strip <(s) = λ − 1 and thereby conclude
that the total contribution of the residues of w ∈ Ak over all k ≥ K is O(n1−λ). Furthermore, since λ is
an arbitrary quantity < log ρδ

log q = 1
2
log p
log q and ρ may be chosen as close to 1 as we like, we can justifiably

choose any λ < 1
2
log p
log q . And if we set ε = 1 − λ then ε exceeds 1 − 1

2
log p
log q by as small a quantity as we

like. Finally we add in all the contributions of short words w with |w| < K and also the contribution from∑
w fw(0); both these bounds are O(1) and therefore completely superfluous. This completes the proof

of Lemma 4.3.

Lemma 4.4 Comparing h(S)2 and h(I)2 . Let ∆
(2)
n = [zn](h

(S)
2 (z) − h(I)2 (z)). Then ∆

(2)
n = O(nε) for

every ε > 1− 1
2
log p
log q .

Proof. For a fixed string w ∈ A∗, with |w| ≥ K, the contribution from w to ∆
(2)
n is

1

2πi

∫
|z|=ρ

P (w)z

(
1

(Dw(z))2
− 1

(1− z(1− P (w)))2

)
dz

zn+1

− Res
z=Aw

P (w)z

(Dw(z))2
1

zn+1
+ Res
z=1/(1−P (w))

P (w)z

(1− z(1− P (w)))2
1

zn+1
.

For fixed w ∈ A∗, to bound this integral, we note

|(1− (1− P (w))z)2 − (Dw(z))2| = |(1− (1− P (w))z)− (Dw(z))| × |(1− (1− P (w))z) + (Dw(z))|
≤ ((1 + ρ)(Sw(ρ)− 1) + (pρ)|w|)O(1).
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Thus, the total contribution to ∆
(2)
n from the integrals, summed over all w ∈ A∗, can again be bounded

above by applying Lemma 4.1, and is thus of over O(ρ−n).
To compare the terms with residues at z = Aw and z = 1/(1− P (w)), we have

− Res
z=Aw

P (w)z

(Dw(z))2
1

zn+1
+ Res
z=1/(1−P (w))

P (w)z

(1− z(1− P (w)))2
1

zn+1

=
P (w)(nB

(1)
w +AwB

(2)
w )

(B
(1)
w )3An+1

w

− nP (w)(1− P (w))n−1. (7)

Thus, we define

fw(x) =
P (w)(xB

(1)
w +AwB

(2)
w )

(B
(1)
w )3Ax+1

w

− xP (w)(1− P (w))x−1,

so that the difference of the residues in (7) is fw(n). We already have, for fixed k ≥ K, the property that∑
w∈Ak fw(x) decreases exponentially as x → ∞, and is O(x) as x → 0 (so no adjustment by fw(0) is

needed). Thus the Mellin transform
∑
w∈Ak f

∗
w(s) exists for s > −1, and we have∑

w∈Ak
f∗w(s)

=
∑
w∈Ak

(
P (w)

(B
(1)
w )2Aw

∫ ∞
0

1

Axw
xsdx+

P (w)B
(2)
w

(B
(1)
w )3

∫ ∞
0

1

Axw
xs−1dx− P (w)

∫ ∞
0

(1− P (w))x−1xsdx

)

=
∑
w∈Ak

(
P (w)

(B
(1)
w )2Aw

(logAw)−s−1Γ(s+ 1) +
P (w)B

(2)
w

(B
(1)
w )3

(logAw)−sΓ(s)

− P (w)

1− P (w)
Γ(s+ 1)

(
log

1

1− P (w)

)−s−1)
=
∑
w∈Ak

(
P (w)

(
1

Sw(1)2

)(
P (w)

Sw(1)

)−s−1
Γ(s+ 1)(1 +O(|w|P (w)))

− P (w)

(
1

Sw(1)3

)(
− 2S′w(1)

)(
P (w)

Sw(1)

)−s
Γ(s)(1 +O(|w|2P (w)))

− P (w)Γ(s+ 1)(P (w))−s−1(1 +O(P (w)))

=
∑
w∈Ak

P (w)−s−1Γ(s)

(
sP (w)((Sw(1))s−1 − 1) + 2S′w(1)(Sw(1))s−3(P (w))2

)
≤ (sup{p−<(s)−1, 1})k(ρδ)kΓ(s)O(1) ,

where the last line again follows immediately from the Lemma 4.1. As before, this establishes that the
contribution of these residues to ∆

(2)
n , taken over all w ∈ A∗ (not just w ∈ Ak for fixed k) is again O(nε)

for every ε > 1− 1
2
log p
log q .

Finally, we once again have a bound of order O(1) due to the contribution of the shortest words, i.e.,
those w with |w| < K. This completes the proof of Lemma 4.4.
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Lemma 4.5 Comparing h(S)3 and h(I)3 . Let ∆
(3)
n = [zn](h

(S)
3 (z) − h(I)3 (z)). Then ∆

(3)
n = O(nε) for

every ε > 1− 1
2
log p
log q .

Proof: For a fixed string w ∈ A∗, with |w| ≥ K, the contribution from w to ∆
(3)
n is

1

2πi

∫
|z|=ρ

P (w)

zn+1

(
zmw(z)

Dw(z)3
− 2pqP (w)z2

(1− z(1− P (w)))3

)
dz (8)

− Res
z=Aw

P (w)mw(z)

Dw(z)3zn
+ Res
z= 1

1−P (w)

2pqP (w)2

(1− z(1− P (w)))3zn−1
.

where mw(z) = Dwa(z)(qSwa(z) − pSwb(z) + p) + Dwb(z)(pSwb(z) − qSwa(z) + q) − (1 − z). To
manage mw(z) throughout the rest of the proof, we need a lemma.

Lemma 4.6 Let mw(z) be defined as above. Then we have

1.
∑
w∈Ak |mw(z)|P (w) = O((ρδ)k), uniformly over all z with |z| ≤ ρ.

2.
∑
w∈Ak |mw(Aw)| =

∑
w∈Ak pq(Sw(1) + 1)P (w) +O((ρδ)k).

3.
∑
w∈Ak |m

(j)
w (Aw)|P (w) = O((ρδ)k) for j = 1, 2.

Proof: One can write

mw(z) = q(Swa(z)− 1)
(
(1− z)(Swa(z) + 1)−Dwb(z)

)
+ p(Swb(z)− 1)

(
(1− z)(Swb(z) + 1)−Dwa(z)

)
+ pq(Sw(z) + 1 + P (w)zk))P (w)zk+1,

and from here the results follow fairly easily from Lemma 4.1, although we must bootstrap to get 2 and 3.
This completes the proof of Lemma 4.6.

Now, to bound the integral-term from 8, we note that by Lemma 4.6 we have∑
w∈Ak

∣∣∣∣ 1

2πi

∫
|z|=ρ

P (w)

zn+1

zmw(z)

Dw(z)3
dz

∣∣∣∣ = O((ρδ)k),

so the sum of this integral over all w ∈ A∗ is finite. And since (1− (1− P (w))z) can also be uniformly
bounded below and

∑
w∈A∗ P (w)2 <∞, we also have∑
w∈A∗

∣∣∣∣ 1

2πi

∫
|z|=ρ

P (w)

zn+1

2pqP (w)z2

(1− z(1− P (w)))3
dz

∣∣∣∣ = O(1).

Therefore the integral terms make only a finite contribution to ∆
(3)
n .

As for the residues, the trie residue-term is

Res
z=1/(1−P (w))

g
(I)
w (z)

zn+1
= Res
z=1/(1−P (w))

2pqP (w)2

(1− z(1− P (w)))3zn−1
= −n(n− 1)pqP (w)2(1−P (w))n−2.
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However, the quantity Resz=Aw
zP (w)mw(z)
Dw(z)3zn+1 is rather complex. To represent it we will have to define

some auxiliary notation. We set

αw =
1

B
(1)
w

, βw =
B

(2)
w

2(B
(1)
w )2

, γw =
−2B

(1)
w B

(3)
w + 3(B

(2)
w )2

6(B
(1)
w )3

.

(It is easy to verify that these three quantities are all uniformly bounded over all w.) We then have

Res
z=Aw

zP (w)mw(z)

Dw(z)3zn+1
= P (w)

(
1

2Anw

(
(6αwβ

2
w + 3α2

wγw)mw(Aw) + 6α2
wβwm

′
w(Aw) + α3

wm
′′
w(Aw)

)
(9)

+
−n
An+1
w

(
3α2

wβwmw(Aw) + α3
wm
′
w(Aw)

)
+
n(n+ 1)

2An+2
w

(
α3
wmw(Aw)

))
.

Lemma 4.6, together the boundedness of the three Greek letters, implies that

∑
w∈A∗

P (w)

2Anw

(
(6αwβ

2
w + 3α2

wγw)mw(Aw) + 6α2
wβwm

′
w(Aw) + α3

wm
′′
w(Aw)

)

is finite, so we need only consider the two terms on the second line of 9. We therefore define a function
fw(x) such that fw(n) gives the the difference of the relevant residue-parts at n:

fw(x) = P (w)

(
− x

Ax+1
w

(
3α2

wβwmw(Aw) + α3
wm
′
w(Aw)

)
+
x(x+ 1)

2An+2
w

(
α3
wmw(Aw)

)
+ x(x− 1)pqP (w)(1− P (w))x−2

)
.

Clearly fw(x) is O(x1) as x → 0 and decreases exponentially as x → ∞, so its Mellin transform f∗w(s)
exists in the strip 〈−1,∞〉. This Mellin transform is

f∗w(s) = P (w)Γ(s+ 1)

(
log(Aw)−s−1

(
−3α2

wβwmw(Aw)− α3
wm
′
w(Aw)

Aw
+
α3
wmw(Aw)

2A2
w

)
+ log(1− P (w))−s−1

pqP (w)

(1− P (w))2

)
+P (w)Γ(s+ 2)

(
log(Aw)−s−2

α3
wmw(Aw)

2A2
w

−
(

log(1− P (w))−s−2
pqP (w)

(1− P (w))2

))
.

We consider the Γ(s+ 1) and Γ(s+ 2) terms separately. Regarding the Γ(s+ 1) term, it is possible (and
easier) to obtain the desired bound without any cancellation between the trie and suffix-tree terms. We
calculate
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∑
w∈Ak

P (w)Γ(s+ 1)

(
log(Aw)−s−1

(
−3α2

wβwmw(Aw)− α3
wm
′
w(Aw)

Aw
+
α3
wmw(Aw)

2A2
w

)

+ log(1− P (w))−s−1
pqP (w)

(1− P (w))2

)
= O(1)

∑
w∈Ak

((
P (w)

Sw(1)

)−s−1
(|mw(Aw)|+ |m′w(Aw)|)P (w) + P (w)−s−1P (w)2

)
Γ(s+ 1)

= O(1)
∑
w∈Ak

(
(q−s−1)k(|mw(Aw)|+ |m′w(Aw)|)P (w) + (q−s)kP (w)

)
Γ(s+ 1)

= O(1)

(
(q−s−1)kO((ρδ)k) + (q−s)k

)
Γ(s+ 1).

From here we proceed as we did for ∆
(1)
n and ∆

(2)
n , and show that the total contribution of this portion of

the residue over all w ∈ A∗ is O(nε) (subject to our usual restriction of ε).
We now turn our attention to the Γ(s+ 2) term,

P (w)Γ(s+ 2)

(
log(Aw)−s−2

α3
wmw(Aw)

2A2
w

−
(

log(1− P (w))−s−2
pqP (w)

(1− P (w))2

))
. (10)

By Lemma 4.6 we can take

∑
w∈A∗

P (w)Γ(s+ 2)

(
log(Aw)−s−2

α3
wmw(Aw)

2A2
w

)
=
∑
w∈A∗

P (w)Γ(s+ 2)×
(

log(Aw)−s−2
α3
wpq(Sw(1) + 1)P (w)

2A2
w

)
+O(nε);

the calculation is straightforward and follows the same lines as the one above. Making this substitution in
10 leaves us with the term

P (w)Γ(s+ 2)

(
log(Aw)−s−2

α3
wpq(Sw(1) + 1)P (w)

2A2
w

− log(1− P (w))−s−2
pqP (w)

(1− P (w))2

)
.

By bootstrapping and Lemma 4.6, we then obtain
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∑
w∈Ak

P (w)Γ(s+ 2)

(
log(Aw)−s−2

α3
wpq(Sw(1) + 1)P (w)

2A2
w

− log(1− P (w))−s−2
pqP (w)

(1− P (w))2

)

=
∑
w∈Ak

P (w)Γ(s+ 2)

((
P (w)

Sw(1)

)−s−2
(1 +O(P (w)))

(
− pq(Sw(1) + 1)

2Sw(1)3
P (w) +O(|w|P (w)2)

)

+P (w)−s−2(1 +O(P (w)))pqP (w)

)
=
∑
w∈Ak

P (w)−s−1
(
pq

(
− Sw(1) + 1

2Sw(1)−s+1
+ 1

)
P (w) +O(|w|P (w)2)

)
Γ(s+ 2)

=
∑
w∈Ak

P (w)−s−1
(
pq

(
2Sw(1)−s+1 − Sw(1)− 1

2Sw(1)−s+1

)
P (w) +O(|w|P (w)2)

)
Γ(s+ 2)

=O(1)(q−s−1)k|s|(ρδ)kΓ(s+ 2).

From here we follow our by-now standard procedure and obtain the result that the total contribution
from the third term is O(nε) for every ε > 1− 1

2
log p
log q , and we are done.

5 Open Problems
Several open problems remain. E.g., precisely characterize the average number of 2-protected nodes in
tries and suffix trees with larger alphabets. Analyze higher moments of the number of 2-protected nodes.
(We conjecture that the variance of the number of 2-protected nodes has a different first-order for tries
versus suffix trees.) Study the average number of k-protected nodes in tries and suffix trees, for k > 2.
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