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Abstract

This paper complements the analysis of Louchard and Prodinger [LP08]

on the number of rounds in a coin-flipping selection algorithm that occurs in

the presence of a demon. We precisely analyze a very different aspect of

the selection algorithm, using different methods of analysis. Specifically, we

obtain precise descriptions of the distribution and all moments of the number

of participants ultimately selected during the execution of the algorithm. The

selection algorithm is robust in at least two significant ways. The presence of

a demon allows for the precise analysis even when errors may occur between

the rounds of the selection process. (The analysis also handles the more

traditional case, in which no demon is involved.) The selection algorithm can

also use either biased or unbiased coins.

1. Introduction

We precisely analyze the number of survivors in a selection process that occurs

in the presence of a demon. Louchard and Prodinger [LP08] recently utilized a

different methodology (for extreme value distributions, often referred to as “Gumbel
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distributions”) to analyze the number of rounds required to perform the selection

algorithm.

The inclusion of a “demon” can be viewed as a generalization of traditional se-

lection algorithms. The demon represents errors which might occur between rounds

of the process. Another interpretation is that participants might be likely to drop

out of the selection process for reasons unrelated to the coin flips in the selection

process itself. In each round, exactly one participant is removed by the “demon”

with probability ν; otherwise, the demon does not affect any participants in that

round. Thus, a traditional selection algorithm (with no demon involved) is just a

special case (using ν = 0) of our very general analysis. The special case ν = 0 (i.e.,

with no demon involved) is a selection process using a traversal of binary retrieval

trees (tries), where a coin flip of “heads” is analogous to descending one direction

in the trie, and a flip of “tails” corresponds to descending in the other direction.

We use p and q (respectively) for the probabilities of heads and tails on coins in

the selection algorithm. The analysis is sufficiently general to handle both the un-

biased (p = q = 1/2) and biased (p �= q) processes. The involvement of a demon

makes the present algorithm more complicated and realistic than the traditional

trie algorithm.

We are able to give the complete distribution and all moments of the number

of survivors in a selection algorithm that occurs in the presence of a demon.

2. Selection algorithm

At the start of the selection algorithm, n people are present. Each person

flips a coin with probability q of heads and p of tails. If all n people flip tails, then

they are all selected by the algorithm and the selection process is finished. If j > 0

people flip heads, then these j people remain in play, and the other n − j (who

flipped tails) are eliminated from further play.

Then a demon arrives and, with probability ν, removes exactly one of the

survivors, so j−1 remain; he leaves the j survivors alone with probability μ = 1−ν.

If he leaves the j survivors alone, then these j survivors begin another round of coin

flipping. If he removes a survivor and j − 1 = 0 (i.e., no survivors remain) then

the selection process is finished and nobody is selected. If he removes a survivor

and j− 1 > 0 (i.e., some survivors remain) then these j− 1 survivors begin another

round of coin flipping.

The end of the algorithm can occur in two possible ways:

(1) During a round of coin flipping, one or more people remain. All of the

remaining people simultaneously flip tails at this stage, and the algorithm ends. All

of the people at this last stage are selected by the algorithm.

(2) During a visit by the demon, only one person is present, and this person

is removed by the demon. In this case, zero people are selected by the algorithm.
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All of the coin flips (among the people and among the rounds) are conducted

independently.

Example 2.1. Suppose that the probability of heads is q = 1/3 and the

probability of tails is p = 2/3. Suppose that the demon appears with probability

ν = 1/5. Then the selection algorithm might proceed as follows: Initially 100

people are present. Exactly 31 of them flip heads (this happens with probability(
100
31

)
q31p69), and then the demon arrives (this happens with probability 1/5) and

removes one of the 31 survivors. So the next round begins with 30 people. Exactly

12 of the remaining 30 people flip heads (this happens with probability
(
30
12

)
q12p18),

and then the demon leaves the survivors alone (this happens with probability 4/5).

So the next round begins with 12 people. Exactly 3 of the remaining 12 people

flip heads (this happens with probability
(
12
3

)
q3p9), and then the demon leaves

the survivors alone (this happens with probability 4/5). So the next round begins

with 3 people. Exactly 3 remaining people flip tails (this happens with probability(
3
0

)
q0p3), and all three are selected by the algorithm.

3. Notation table

Most of the following definitions are already embedded at the appropriate

places in the analysis. For the reader’s convenience, we also summarize many of the

terminologies used, in one succinct location. For the convenience of someone who

already read [LP08], we preserve some of Louchard and Prodinger’s earlier notation:

n := number of people present at the start of the selection algo-

rithm,

q := probability that a coin flip shows heads,

p := 1− q, probability that a coin flip shows tails,

ν := probability that, during a visit by the demon, one survivor

is removed,

μ := 1−ν, probability that the demon does not remove a survivor

during a visit,

Xn := number of people selected by the algorithm, with n initial

participants,

π(n,m, j) := probability the algorithm selects m of the initial n people

and requires j rounds; by convention, π(0, 0, 1) = 1, and

otherwise π(0,m, j) = 0,

π(n,m) := P(Xn = m) = probability that the algorithm selects m

of the initial n people; by convention, π(0, 0) = 1, and

π(0,m) = 0 for m �= 0,
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Fn(u, v) :=

∞∑
m=0

∞∑
j=0

π(n,m, j)umvj ,

Fn(u) := Fn(u, 1) =

∞∑
m=0

π(n,m)um =

∞∑
m=0

P(Xn = m)um,

Q := 1/q,

L := lnQ,

χ� := 2�πi/L,

Hj :=

j∑
k=1

1

k
is the jth harmonic number,

xj :=

j−1∏
�=0

(x−�) = (x)(x−1)(x−2) · · · (x−j+1) is the jth falling

power of x,

E[X
j

n] := E

[ j−1∏
�=0

(Xn − �)
]
is the jth factorial moment of the random

variable Xn,

F (s)
n (u) :=

ds

dus
Fn(u).

We utilize some concepts from the theory of q-analysis. Since the value of q is fixed,

we suppress the dependence on q. For positive integers n, we use the q-Pochhammer

symbol

(x)n :=

n−1∏
j=0

(1− xqj) = (1− x)(1 − xq)(1 − xq2) · · · (1− xqn−1).

We also define (x)∞ :=
∏∞

j=0(1 − xqj) = limn→∞(x)n. For complex-valued z, we

define

(x)z :=
(x)∞
(xqz)∞

.

4. Results

The following two theorems precisely characterize the sth factorial moment

E[X
s
n] and the distribution P(Xn > r) of Xn. Each has the form const+δ(logQ n)+

o(1). The constant and the function δ both depend on s or r, respectively. In both

cases, the δ is fluctuating, because e2�πi logQ n is fluctuating, with |e2�πi logQ n| = 1.
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Theorem 4.1. The sth factorial moment of the number Xn of people selected

by the algorithm, when beginning with n participants, is

E [X
s
n]

=
(Qp)s

L

[ (μq)∞
(q)∞

(s− 1)!+

+s(−1)s−1
∑

j≥s−1

js−1
[
L
(μq)j
(q)j

(∑
�≥1

μqj+�

1− μqj+�
−

∑
�≥1

qj+�

1− qj+�

)
+

+
((μq)∞

(q)∞
−

(μq)j
(q)j

)
(Hj −Hj−s+1)

]]
+

+
∑
� �=0

φs,�(n) +O(n−1),

where

φs,�(n)=
(Qp)s(−1)s

L

( (μq)∞
(q)∞

χ
s

� + s
∑
j≥0

( (μq)j
(q)j

−
(μq)∞
(q)∞

)(
js−1 − (j + χ�)

s−1
))

×

× Γ(−χ�)e
2�πi logQ n.

Theorem 4.2. The distribution of the number Xn of people selected by the

algorithm, when beginning with n participants, is

P(Xn > r) =
(μq)∞
L(q)∞

[
L−

r∑
s=1

ps

s
−

νpr

r + 1
−Q(−p)r+1

∑
m≥2

(1/μ)m(μq)m

(q)m
×

×
( r∑
s=1

(−1)s

s

q(m−1)(r−s)

(1− qm−1)r−s+1
+

q(m−1)r(m− 1)L

(1 − qm−1)r+1

)]
+

+
∑
� �=0

Φr,�(n) +O(n−1),

where

Φr,�(n)

=
Q

L

(μq)∞
(q)∞

(
−q

r∑
s=1

χ
s

�

s!
(−p)s + (−p)rνq

χ
r+1

�

(r + 1)!
+

+ (−p)r+1
∑
m≥2

(1/μ)m(μq)m

(q)m

( q(m−1)r

(1− qm−1)r+1
−

r∑
s=0

χ
s

�

s!

q(m−1)(r−s)

(1 − qm−1)r−s+1

))
×

× Γ(−χ�)e
2�πi logQ n.
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5. Asymptotic moments of the number of survivors

5.1. Derivation of generating functions

We next establish an exact formula for the bivariate generating function

Fn(u, v) that describes the probabilities associated with the number of survivors

and the number of rounds in the entire algorithm.

Lemma 5.1. Let Fn(u, v) be a bivariate generating function such that the

coefficient of umvj is the probability that, in the algorithm, exactly m people are

ultimately selected and exactly j rounds are used to complete the election. Then

Fn(u, v)

=
n∑

k=0

(
n

k

)(
v(−q)k

(v)k
(μvq)k

+ (−q)k−1 (vq)k−1

(μqv)k

k−1∑
j=0

(1− pu)jpv(u− 1)(μqv)j
qj(vq)j

)
.

(1)

The proof of Lemma 5.1 utilizes some recurrences associated with Fn(u, v).

The proof is given in Section 7.

Corollary 5.2. Setting u = 1 in Lemma 5.1, we obtain

Fn(1, v) =

n∑
k=0

(
n

k

)
v(−q)k

(v)k
(μvq)k

. (2)

This verifies that our results about the number of rounds agrees with the results from

our previous paper.

During the remainder of the paper, we no longer pay attention to the number

of rounds. We focus exclusively on the number of survivors.

Lemma 5.3. The sth factorial moment of Xn is

E[X
s
n] =

n∑
k=1

(
n

k

)
(−1)k−1ϕs(k), (3)

with

ϕs(z) = qz
(q)z−1

(μq)z
s(Qp)s(−1)s−1ψs(z), (4)

and

ψs(z) =
(μq)∞
(q)∞

zs

s
+

∑
j≥0

[((μq)j
(q)j

−
(μq)∞
(q)∞

)
js−1 −

((μq)j+z

(q)j+z

−
(μq)∞
(q)∞

)
(j + z)s−1

]
.
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5.2. Asymptotics

Now we turn our attention to the asymptotic moments of the number of

survivors in the algorithm as the number n of initial participants grows large. We

note that (q)z−1 = (q)∞
(1−qz)(qz+1)∞

, so ϕs(z) has a simple pole at each of the locations

of the form z = m + 2�πi
L

for �,m ∈ Z with m ≤ 0. By [FS95, Theorem 2], we can

restrict attention to the poles, where m = 0, i.e., where z = χ� for � ∈ Z. Thus

E[X
s
n] =

∑
�∈Z

Res
z=χ�

[
ϕs(z)

n!(−1)n

(z)(z − 1) · · · (z − n)

]
+O(n−1).

We need the local expansion of ϕs(z) and thus ψs(z) around z = 0 to two terms,

since ϕs(z)
n!

(z)(z−1)···(z−n) has a double pole at z = 0, but only a simple pole at

z = χ� for � �= 0. As z → 0,

(μq)j+z

(q)j+z

∼
(μq)j
(q)j

[
1− zL

∑
�≥1

μqj+�

1− μqj+�
+ zL

∑
�≥1

qj+�

1− qj+�

]
,

and

(j + z)s−1 ∼ js−1 [1 + z(Hj −Hj−s+1)] .

Thus

ψs(z)∼
(μq)∞
(q)∞

(−1)s−1(s− 1)!

s
z+

+
∑

j≥s−1

[((μq)j
(q)j

−
(μq)∞
(q)∞

)
js−1 −

−
((μq)j

(q)j

[
1− zL

∑
�≥1

μqj+�

1− μqj+�
+ zL

∑
�≥1

qj+�

1− qj+�

]
−

(μq)∞
(q)∞

)
×

×js−1[1 + z(Hj −Hj−s+1)]
]
.

More simply, as z → 0,

ψs(z)∼ z
[(μq)∞
(q)∞

(−1)s−1(s− 1)!

s
+

+
∑

j≥s−1

js−1
[
L
(μq)j
(q)j

(∑
�≥1

μqj+�

1− μqj+�
−

∑
�≥1

qj+�

1− qj+�

)
+

+
((μq)∞

(q)∞
−

(μq)j
(q)j

)
(Hj −Hj−s+1)

]]
.
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Notice the absence of the constant term! Substituting into the definition of ϕs(z)

in (4), it follows that

ϕs(z)∼ qz
(q)z−1

(μq)z
s(Qp)s(−1)s−1×

×z
[(μq)∞
(q)∞

(−1)s−1(s− 1)!

s
+

+
∑

j≥s−1

js−1
[
L
(μq)j
(q)j

(∑
�≥1

μqj+�

1− μqj+�
−

∑
�≥1

qj+�

1− qj+�

)
+

+
((μq)∞

(q)∞
−

(μq)j
(q)j

)
(Hj −Hj−s+1)

]]

as z → 0. Also z(q)z−1 ∼ 1/L and (μq)z ∼ 1, so

ϕs(z)∼
(Qp)s

L

[ (μq)∞
(q)∞

(s− 1)!+

+s(−1)s−1
∑

j≥s−1

js−1
[
L
(μq)j
(q)j

(∑
�≥1

μqj+�

1− μqj+�
−

∑
�≥1

qj+�

1− qj+�

)
+

+
((μq)∞

(q)∞
−

(μq)j
(q)j

)
(Hj −Hj−s+1)

]]

as z → 0. Also n!(−1)n

(z−1)···(z−n) ∼ 1 as z → 0. Therefore

Res
z=0

[
ϕs(z)

n!(−1)n

(z)(z − 1) · · · (z − n)

]

= lim
z→0

ϕs(z)

=
(Qp)s

L

[ (μq)∞
(q)∞

(s− 1)!+

+s(−1)s−1
∑

j≥s−1

js−1
[
L
(μq)j
(q)j

(∑
�≥1

μqj+�

1− μqj+�
−

∑
�≥1

qj+�

1− qj+�

)
+

+
((μq)∞

(q)∞
−

(μq)j
(q)j

)
(Hj −Hj−s+1)

]]
.

So the sth factorial moment E[X
s
n] of Xn is

E[X
s
n] =

(Qp)s

L

[ (μq)∞
(q)∞

(s− 1)!+

+s(−1)s−1
∑

j≥s−1

js−1
[
L
(μq)j
(q)j

(∑
�≥1

μqj+�

1− μqj+�
−

∑
�≥1

qj+�

1− qj+�

)
+

+
( (μq)∞

(q)∞
−

(μq)j
(q)j

)
(Hj −Hj−s+1)

]]
+

+
∑
� �=0

φ̃s,�(n) +O(n−1),



NUMBER OF SURVIVORS IN THE PRESENCE OF A DEMON 109

where

φ̃s,�(n)= Res
z=χ�

[
ϕs(z)

n!(−1)n

(z)(z − 1) · · · (z − n)

]

= Res
z=χ�

[(q)z−1]
qχ�sps

(μq)χ�
qs

(−1)s−1ψs(χ�)
n!(−1)n

(χ�)(χ� − 1) · · · (χ� − n)

=
(Qp)s(−1)s

L

( (μq)∞
(q)∞

χ
s

� + s
∑
j≥0

( (μq)j
(q)j

−
(μq)∞
(q)∞

)(
js−1 − (j + χ�)

s−1
))

×

× Γ(−χ�)e
2�πi logQ n

(
1 +O(n−1)

)
.

Note that e2�πi logQ n is fluctuating, with |e2�πi logQ n| = 1. This completes the proof

of Theorem 4.1.

6. Asymptotic distribution of the number of survivors

6.1. Derivation of the distribution of the number of survivors

Now we derive an exact formula for the distribution of the number of survivors

selected at the end of the algorithm.

Lemma 6.1. Let r ≥ 0. The probability that strictly more than r out of n

initial participants are selected at the end of the algorithm is

P(Xn > r) =
n∑

k=1

(
n

k

)
(−q)k−1 (q)k−1

(μq)k
pr+1(−1)r×

×
(μq)∞
(q)∞

∑
m≥0

(1/μ)m(μq)m

(q)m

k−1∑
j=0

(
j

r

)(
qj
)m−1

.

(5)

The proof of Lemma 6.1 utilizes the q-binomial theorem; see Section 7.

Lemma 6.2. The distribution of Xn has the form

P(Xn > r) =

n∑
k=1

(
n

k

)
(−1)k−1
r(k), (6)

with


r(z) = qz−1 (q)z−1

(μq)z
pr+1(−1)rΨr(z), (7)

and

Ψr(z)=
(μq)∞
(q)∞

( q

(−p)r+1

(
1−

r∑
s=0

zs

s!
q−z(−p)s

)
+

(μ− 1)q

p

zr+1

(r + 1)!
+

+
∑
m≥2

(1/μ)m(μq)m

(q)m

( q(m−1)r

(1 − qm−1)r+1
−

r∑
s=0

zs

s!

q(m−1)(z+r−s)

(1− qm−1)r−s+1

))
.
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6.2. Asymptotics

Now we turn our attention to the asymptotic distribution of the number

of survivors in the algorithm as the number n of initial participants grows large.

We follow the derivation for the Rice Method discussed in Section 5. As before,

(q)z−1 = (q)∞
(1−qz)(qz+1)∞

, so 
r(z) has a simple pole at each of the locations of the

form z = m+ 2�πi
L

for �,m ∈ Z with m ≤ 0. Again, by [FS95], we focus on the poles

z = χ� for � ∈ Z. Thus

P(Xn > r) =
∑
�∈Z

Res
z=χ�

[

r(z)

n!(−1)n

(z)(z − 1) · · · (z − n)

]
+O(n−1).

Similarly to the derivation in Section 5, we need the local expansion of 
r(z) and

thus Ψr(z) around z = 0 to two terms, since 
r(z)
n!

(z)(z−1)···(z−n) has a double pole

at z = 0, but only a simple pole at z = χ� for � �= 0. As z → 0,
r∑

s=0

zs

s!
q−z(−p)s ∼ 1− z

r∑
s=1

ps

s
+ zL,

zr+1

(r + 1)!
∼ z

(−1)r

(r + 1)
,

and
r∑

s=0

zs

s!

q(m−1)(z+r−s)

(1− qm−1)r−s+1

∼
q(m−1)r

(1− qm−1)r+1
+ z

r∑
s=1

(−1)s−1

s

q(m−1)(r−s)

(1− qm−1)r−s+1
− z

q(m−1)rL(m− 1)

(1− qm−1)r+1
.

Thus

Ψr(z)∼
(μq)∞
(q)∞

( q

(−p)r+1

(
z

r∑
s=1

ps

s
− zL

)
+

(μ− 1)q

p
z
(−1)r

(r + 1)
+

+
∑
m≥2

(1/μ)m(μq)m

(q)m
×

×
(
−z

r∑
s=1

(−1)s−1

s

q(m−1)(r−s)

(1− qm−1)r−s+1
+ z

q(m−1)rL(m− 1)

(1− qm−1)r+1

))
.

More simply, as z → 0,

Ψr(z)∼ z
(μq)∞
(q)∞

[q(−1)r

pr+1

(
L−

r∑
s=1

ps

s

)
−

(1 − μ)q

p

(−1)r

(r + 1)
+

+
∑
m≥2

(1/μ)m(μq)m

(q)m
×

×
( r∑
s=1

(−1)s

s

q(m−1)(r−s)

(1− qm−1)r−s+1
+

q(m−1)r(m− 1)L

(1− qm−1)r+1

)]
.
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As before, notice the absence of the constant term. Substitution into (7) yields


r(z)∼ qz−1 (q)z−1

(μq)z
pr+1(−1)r×

×z
(μq)∞
(q)∞

[q(−1)r

pr+1

(
L−

r∑
s=1

ps

s

)
−

(1− μ)q

p

(−1)r

(r + 1)
+

+
∑
m≥2

(1/μ)m(μq)m

(q)m
×

×
( r∑
s=1

(−1)s

s

q(m−1)(r−s)

(1 − qm−1)r−s+1
+

q(m−1)r(m− 1)L

(1− qm−1)r+1

)]

as z → 0. Also z(q)z−1 ∼ 1/L and (μq)z ∼ 1, so


r(z)∼
(μq)∞
L(q)∞

[
L−

r∑
s=1

ps

s
−

νpr

r + 1
−

−Q(−p)r+1
∑
m≥2

(1/μ)m(μq)m

(q)m
×

×
( r∑
s=1

(−1)s

s

q(m−1)(r−s)

(1 − qm−1)r−s+1
+

q(m−1)r(m− 1)L

(1− qm−1)r+1

)]

as z → 0. Also n!(−1)n

(z−1)···(z−n) ∼ 1 as z → 0. Therefore

Res
z=0

[

r(z)

n!(−1)n

(z)(z − 1) · · · (z − n)

]

= lim
z→0


r(z)

=
(μq)∞
L(q)∞

[
L−

r∑
s=1

ps

s
−

νpr

r + 1
−Q(−p)r+1

∑
m≥2

(1/μ)m(μq)m

(q)m
×

×
( r∑
s=1

(−1)s

s

q(m−1)(r−s)

(1− qm−1)r−s+1
+

q(m−1)r(m− 1)L

(1− qm−1)r+1

)]
.

So

P(Xn > r)=
(μq)∞
L(q)∞

[
L−

r∑
s=1

ps

s
−

νpr

r + 1
−Q(−p)r+1

∑
m≥2

(1/μ)m(μq)m

(q)m
×

×
( r∑
s=1

(−1)s

s

q(m−1)(r−s)

(1− qm−1)r−s+1
+

q(m−1)r(m− 1)L

(1 − qm−1)r+1

)]
+

+
∑
� �=0

Φ̃r,�(n) +O(n−1),
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where

Φ̃r,� (n)

= Res
z=χ�

[

r(z)

n!(−1)n

(z)(z − 1) · · · (z − n)

]

= Res
z=χ�

[(q)z−1]
qχ�−1pr+1

(μq)χ�

(−1)rΨr(χ�)
n!(−1)n

(χ�)(χ� − 1) · · · (χ� − n)

=
Q

L

(μq)∞
(q)∞

(
−q

r∑
s=1

χ
s

�

s!
(−p)s + (−p)rνq

χ
r+1

�

(r + 1)!
+

+(−p)r+1
∑
m≥2

(1/μ)m(μq)m

(q)m

( q(m−1)r

(1− qm−1)r+1
−

r∑
s=0

χ
s

�

s!

q(m−1)(r−s)

(1− qm−1)r−s+1

))
×

×Γ(−χ�)e
2�πi logQ n

(
1 +O(n−1)

)
.

Note that e2�πi logQ n is fluctuating, with |e2�πi logQ n| = 1. This completes the proof

of Theorem 4.2

7. Proofs

Proof of Lemma 5.1. When starting with n participants, if all n partic-

ipants are simultaneously eliminated by coin flipping, then these n participants

are selected by the algorithm; this corresponds to the term
(
n
0

)
q0pnunv in recur-

rence (8) below. If exactly j participants obtain heads, with 1 ≤ j ≤ n, then the

demon arrives and removes one additional participant with probability ν, or leaves

the j remaining participants alone with probability μ. This phenomenon corre-

sponds to v
∑n

j=1

(
n

j

)
qjpn−j(νFj−1(u, v) + μFj(u, v)) in formula (8). (Note that,

since F0(u, v) = v, the recurrence below also holds when n = 0.) So the recurrence

Fn(u, v) =

(
n

0

)
q0pnunv + v

n∑
j=1

(
n

j

)
qjpn−j(νFj−1(u, v) + μFj(u, v)) (8)

holds for all integers n ≥ 0. More simply,

Fn(u, v) = v

(
pnun +

n∑
j=1

(
n

j

)
qjpn−j(νFj−1(u, v) + μFj(u, v))

)
. (9)

Next we define the exponential generating function

G(z, u, v) :=

∞∑
n=0

Fn(u, v)
zn

n!
.



NUMBER OF SURVIVORS IN THE PRESENCE OF A DEMON 113

From the recurrence in (9), it follows that

G(z, u, v)= v

∞∑
n=0

(
pnun +

n∑
j=1

(
n

j

)
qjpn−j(νFj−1(u, v) + μFj(u, v))

)zn
n!

= v

(
epuz +

∞∑
j=1

qjzj(νFj−1(u, v) + μFj(u, v))

∞∑
n=j

(
n

j

)
pn−j z

n−j

n!

)

= v
(
epuz + epz

∞∑
j=1

(qz)j

j!
(νFj−1(u, v) + μFj(u, v))

)

= v
(
epuz + epz

(
νq

∫
G(qz, u, v) dz + μG(qz, u, v)− μv

))
.

(10)

The generating function G(z, u, v) becomes simpler if we replace the fixed

number n of people present at the start of the algorithm by a Poisson number of

participants with mean z. For this reason, we replace G(z, u, v) by the Poissonized

exponential generating function

D(z, u, v) := G(z, u, v)e−z =
∞∑
n=0

Dn(u, v)
zn

n!
.

From (10), it follows that

D(z, u, v) = ve(pu−1)z + ve−qz
(
νq

∫
G(qz, u, v) dz + μG(qz, u, v)− μv

)
. (11)

We use a succinct notation for differentiation with respect to the first of three

variables:

D′(z, u, v) :=
d

dz
D(z, u, v)

and

G′(z, u, v) :=
d

dz
G(z, u, v).

Differentiating both sides of (11) with respect to z yields

D′(z, u, v)= (pu− 1)ve(pu−1)z − vqe−qz
(
νq

∫
G(qz, u, v)dz + μG(qz, u, v)− μv

)
+

+ ve−qz (νqG(qz, u, v) + μqG′(qz, u, v)) .

It follows that

D′(z, u, v) + qD(z, u, v) = μqvD′(qz, u, v) + qvD(qz, u, v) + e(pu−1)zpv(u− 1).

For n ≥ 1, extracting the coefficient of zn−1

(n−1)! from D(z, u, v) =
∑∞

n=0 Dn(u, v)
zn

n!

yields

Dn(u, v)+qDn−1(u, v)=μqvDn(u, v)q
n−1+qvDn−1(u, v)q

n−1+(pu−1)n−1pv(u−1),
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or equivalently,

Dn(u, v) = Dn−1(u, v)
vqn − q

1− μvqn
+

(pu− 1)n−1pv(u− 1)

1− μvqn
.

Iterating this recurrence yields

Dn(u, v)= v(−q)n
(v)n

(μvq)n
+

n−1∑
j=0

(pu− 1)jpv(u− 1)
∏n

k=j+2(vq
k − q)∏n

�=j+1(1− μvq�)

= v(−q)n
(v)n

(μvq)n
+ (−q)n−1 (vq)n−1

(μqv)n

n−1∑
j=0

(1− pu)jpv(u− 1)(μqv)j
qj(vq)j

.

Note that Fn(u, v) =
∑n

k=0

(
n
k

)
Dk(u, v), so Lemma 5.1 follows.

Proof of Lemma 5.3. Setting v = 1 in Lemma 5.1, it follows that

Fn(u)= Fn(u, 1)

=
n∑

k=0

(
n

k

)(
(−q)k

(1)k
(μq)k

+ (−q)k−1 (q)k−1

(μq)k

k−1∑
j=0

(1− pu)jp(u− 1)(μq)j
qj(q)j

)

= 1 +

n∑
k=1

(
n

k

)
(−q)k−1 (q)k−1

(μq)k

k−1∑
j=0

(1− pu)jp(u− 1)(μq)j
qj(q)j

.

(12)

It follows that, for s ≥ 1,

F (s)
n (1) =

n∑
k=1

(
n

k

)
(−1)k−1qk

(q)k−1

(μq)k
s(Qp)s(−1)s−1

k−1∑
j=0

(μq)j
(q)j

js−1. (13)

Dissecting the summation over j in (13), we obtain

k−1∑
j=0

(μq)j
(q)j

js−1

=
(μq)∞
(q)∞

k−1∑
j=0

js−1 +

k−1∑
j=0

[ (μq)j
(q)j

−
(μq)∞
(q)∞

]
js−1

=
(μq)∞
(q)∞

ks

s
+

∑
j≥0

[ (μq)j
(q)j

−
(μq)∞
(q)∞

]
js−1 −

∑
j≥k

[ (μq)j
(q)j

−
(μq)∞
(q)∞

]
js−1

=
(μq)∞
(q)∞

ks

s
+

∑
j≥0

[ (μq)j
(q)j

−
(μq)∞
(q)∞

]
js−1 −

∑
j≥0

[ (μq)j+k

(q)j+k

−
(μq)∞
(q)∞

]
(j + k)s−1

=
(μq)∞
(q)∞

ks

s
+

∑
j≥0

[( (μq)j
(q)j

−
(μq)∞
(q)∞

)
js−1 −

( (μq)j+k

(q)j+k

−
(μq)∞
(q)∞

)
(j + k)s−1

]
.
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Finally, we observe that, since Fn(u) =
∑∞

m=0 π(n,m)um, then F
(s)
n (1) =∑∞

m=0 m
s π(n,m) = E[X

s
n]. Thus E[X

s
n] has the representation given in the state-

ment of Lemma 5.3.

Proof of Lemma 6.1. First of all,

P(Xn > r) =
∑
m>r

π(n,m) = 1−

r∑
m=0

π(n,m).

Note that
∑r

m=0 π(n,m) = [ur]Fn(u)
1−u

, and of course 1 = [ur] 1
1−u

, so

P(Xn > r) = [ur]
1− Fn(u)

1− u

= [ur]
Fn(u)− 1

u− 1

= [ur]

n∑
k=1

(
n

k

)
(−q)k−1 (q)k−1

(μq)k

k−1∑
j=0

(1− pu)jp(μq)j
qj(q)j

(by equation (12))

=

n∑
k=1

(
n

k

)
(−q)k−1 (q)k−1

(μq)k
pr+1(−1)r

k−1∑
j=0

(
j

r

)
(μq)j
qj(q)j

.

(14)

We focus on the second summation in (14). Recall that (x)z := (x)∞/(xqz)∞, so

(μq)j
(q)j

=
(μq)∞
(q)∞

(qj+1)∞
(μqj+1)∞

. (15)

Also, the q-binomial theorem states (az)∞
(z)∞

=
∑

m≥0
(a)m
(q)m

zm. Specifying z = μqj+1

and a = 1/μ,
(qj+1)∞
(μqj+1)∞

=
∑
m≥0

(1/μ)m
(q)m

(
μqj+1

)m

. (16)

Combining (15) and (16) yields

k−1∑
j=0

(
j

r

)
(μq)j
qj(q)j

=

k−1∑
j=0

(
j

r

)
q−j (μq)∞

(q)∞

∑
m≥0

(1/μ)m
(q)m

(
μqj+1

)m

=
(μq)∞
(q)∞

∑
m≥0

(1/μ)m(μq)m

(q)m

k−1∑
j=0

(
j

r

)(
qj
)m−1

.

(17)

Thus

P(Xn > r)

=

n∑
k=1

(
n

k

)
(−q)k−1 (q)k−1

(μq)k
pr+1(−1)r

(μq)∞
(q)∞

∑
m≥0

(1/μ)m(μq)m

(q)m

k−1∑
j=0

(
j

r

)(
qj
)m−1

,

as claimed in the lemma.
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Proof of Lemma 6.2. Let r ≥ 0. The probability that strictly more than r

out of n initial participants are selected at the end of the algorithm is

P(Xn > r)

=

n∑
k=1

(
n

k

)
(−q)k−1 (q)k−1

(μq)k
pr+1(−1)r

(μq)∞
(q)∞

∑
m≥0

(1/μ)m(μq)m

(q)m

k−1∑
j=0

(
j

r

)(
qj
)m−1

.

(18)

We handle the sum over m in Lemma 6.1 in three parts, m = 0, m = 1, and m ≥ 2,

as follows:

∑
m≥0

(1/μ)m(μq)m

(q)m

k−1∑
j=0

(
j

r

)(
qj
)m−1

=

k−1∑
j=0

(
j

r

)
q−j +

(1 − 1/μ)(μq)

(1− q)

k−1∑
j=0

(
j

r

)
+

∑
m≥2

(1/μ)m(μq)m

(q)m

k−1∑
j=0

(
j

r

)(
qj
)m−1

=

k−1∑
j=0

(
j

r

)
q−j +

(μ− 1)q

p

kr+1

(r + 1)!
+

∑
m≥2

(1/μ)m(μq)m

(q)m

k−1∑
j=0

(
j

r

)(
qj
)m−1

.

(19)

Now we focus our attention on the sums of the form
∑k−1

j=0

(
j

r

)
xj . Writing D = d

dx
,

we note

k−1∑
j=0

(
j

r

)
xj =

xr

r!

k−1∑
j=0

jrxj−r =
xr

r!

k−1∑
j=0

Drxj =
xr

r!
Dr

k−1∑
j=0

xj =
xr

r!
Dr 1− xk

1− x
. (20)

The remainder of the analysis does not depend on k being an integer. We have

xr

r!
Dr 1− xk

1− x
=

xr

r!

r∑
s=0

(
r

s

)
Ds(1− xk) ·Dr−s

( 1

1− x

)

=
xr

r!
(1− xk) ·

r!

(1− x)r+1
−

xr

r!

r∑
s=1

(
r

s

)
ksxk−s ·

(r − s)!

(1 − x)r−s+1

=
xr

(1− x)r+1
−

xrxk

(1− x)r+1
−

r∑
s=1

ks

s!

xk+r−s

(1− x)r−s+1

=
xr

(1− x)r+1
−

r∑
s=0

ks

s!

xk+r−s

(1− x)r−s+1
.

(21)

Thus, combining (20) and (21) with x = qm−1, we can simplify the “m ≥ 2” term

of (19) as follows:

k−1∑
j=0

(
j

r

)(
qj
)m−1

=
q(m−1)r

(1− qm−1)r+1
−

r∑
s=0

ks

s!

q(m−1)(k+r−s)

(1− qm−1)r−s+1
. (22)
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For m = 0, the analogous equation is

k−1∑
j=0

(
j

r

)
q−1 =

q−r

(1 − q−1)r+1
−

r∑
s=0

ks

s!

q−(k+r−s)

(1 − q−1)r−s+1

=
q

(−p)r+1

(
1−

r∑
s=0

ks

s!
q−k(−p)s

)
.

(23)

Plugging the results from (22) and (23) into (19), we get

∑
m≥0

(1/μ)m(μq)m

(q)m

k−1∑
j=0

(
j

r

)(
qj
)m−1

=
q

(−p)r+1

(
1−

r∑
s=0

ks

s!
q−k(−p)s

)
+

(μ− 1)q

p

kr+1

(r + 1)!
+

+
∑
m≥2

(1/μ)m(μq)m

(q)m

q(m−1)r

(1 − qm−1)r+1
−

r∑
s=0

ks

s!

q(m−1)(k+r−s)

(1 − qm−1)r−s+1
.

Finally, a substitution into the form of P(Xn > r) in Lemma 6.1 yields

Lemma 6.2.

8. Future problems

A key problem for future analysis involves a more robust demon, who might

be able to remove more than one participant at a time. Another problem to be

studied in the future might involve replacing the 2-outcome coins (heads versus

tails) with a coin that itself involves some uncertainty. Another interpretation of

this extension is that the parameters p and q are unknown before the coin is flipped.

Many other possibilities exist for generalizing the present algorithm.
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