
Mini-Workshop: Random Trees, Information and Algorithms 1269

[5] Caliebe, A. Symmetric Fixed Points of a Smoothing Transformation. Adv. Appl. Probab.
35 (2003), 377–394.

[6] Caliebe, A. Representation of fixed points of a smoothing transformation. Mathematics and
computer science. III (2004), 311–324, Trends Math., Birkhäuser, Basel.

[7] Caliebe, A. and Rösler, U. Fixed points with finite variance of a smoothing transformation.
Stochastic Process. Appl. 109 (2003), 105–129.

[8] Rüschendorf, L. On stochastic recursive equations of sum and max type. J. Appl. Probab.
43 (2006), 678-703.

[9] Spitzmann, J. Lösungen inhomogener stochastischer Fixpunktgleichungen (Solutions of
inhomogeneous fixed-point equations). PhD Dissertation, Christian-Albrechts-Universität
Kiel.

Towards the Variance of the Profile of Suffix Trees

Mark Daniel Ward

(joint work with Pierre Nicodème)

We consider randomly generated strings from which we (1) determine the profile
of the analogous suffix tree, or (2) determine the subword complexity. A suffix
tree is a retrieval tree (trie) built from the unique (occurring only once) prefixes
of the suffixes of a string. E.g., if S = 0101100111100001000111000 . . ., and if we
build a suffix tree from the first 12 strings of S, the 10th suffix has a unique prefix
11000, so it gets inserted as the leaf S10 in Figure 2. The suffix tree has “myriad”
applications [1].

Figure 2. A suffix tree built from string S = 0101100111100001000111000 . . .

The (internal) profile of a suffix tree at level k is the number of (internal) nodes
located on level k. Our goal is to make precise comparisons of the profile of a suffix
tree versus the profile of a trie built over independent strings. When the underlying
strings all derive from a Bernoulli source, a comparison of the average profile of a
suffix tree versus the average profile of a trie built over independent strings was

1270 Oberwolfach Report 23/2011

made in [7]. Empirical evidence has been given, however, that the variance of the
profile of a suffix tree at level k has asymptotically different behavior than the
profile of a trie built over independent strings; see [5]. A recent, comprehensive
study of the distribution of the profile of a trie built over independent strings
appears in [6].

We use the following notations.

• |S|w is the number of occurrences of the word w in the string S.
• For a set of words Wn of cardinality n, we write

|Wn|w = |{u ∈ Wn; u = w}|, the number of words of Wn equal to w.

We generate strings randomly over an alphabet A = {a, b} according to a Bernoulli
source. In other words, assuming that there are probabilities p and q = 1 − p
associated with letters a and b, the probability that a string of length n has exactly
j occurrences of a is

(n
j

)
pjqn−j .

Generating a random string S of length n + k − 1 and a set Tn of n random
strings of length k, we consider the boolean indicators

• I(d)n,w = 1 if |S|w ≥ d and I(d)n,w = 0 elsewhere,

• J (d)
n,w = 1 if |Tn|w ≥ d and J (d)

n,w = 0 elsewhere.

If a suffix tree is built from such a string S, then the profile X(prof)
n,k of such a suffix

tree is equal to the number of words of length k that occur two or more times as
subwords in S. In other words, we observe

X(prof)
n,k =

∑

w∈Ak

I(2)n,w,

where Ak is the collection of all binary words of length k.
Similarly, we define

Y (prof)
n,k =

∑

w∈Ak

J (2)
n,w,

which corresponds to the profile of a trie built upon n random strings of length k.

Then [7] proves X(prof)
n,k − Y (prof)

n,k = O(n−εµk) for ε > 0 and µ < 1, but [5] gives
empirical evidence that the variances are asymptotically different.

The kth subword complexity X(sub)
n,k of S (of length n+k− 1) is the number

of distinct subwords of length k that occur at least once as a subword of S. We
therefore have

X(sub)
n,k =

∑

w∈Ak

I(1)n,w.

Finally, we define

Y (sub)
n,k =

∑

w∈Ak

J (1)
n,w,

where the “sub” is just meant to remind us that Y (sub)
n,k is defined similarly to the

subword complexity X(sub)
n,k above. Then [3] proves X(sub)

n,k − Y (sub)
n,k = O(n−εµk)

Mini-Workshop: Random Trees, Information and Algorithms 1271

for ε > 0 and µ < 1, but empirical evidence (unpublished) also shows that the
variances are asymptotically different.

The correlation set of a pair of words u, v (here, of the same length) is
Cu,v = {h | u.h = y.v, |y| < |u|}. The correlation polynomial is the relevant
generating function. For example, u = ababa and v = abaab have correlation poly-
nomial Cu,v(z) = P (ab)z2 + P (baab)z4. Previous approaches to problems of this
nature use methods by Jacquet, Régnier, Szpankowski, and many others, tracing
back to Goulden and Jackson, and Guibas and Odlyzko; here, we use the “cluster”
approach that has been initially defined by Goulden and Jackson (see [2] for cita-
tions and recent discussion); we also do not consider the relevant complex analysis
(this will follow in a longer treatment), but use the following intuitive approach:
the primary results will be derived from noting that an autocorrelation polynomial
is 1 plus much smaller terms, with high probability, and a correlation polynomial
of two distinct words is 0 plus much smaller terms, with high probability; see [4].
Briefly, we have

∑

n≥0

E[Y (sub)
n,k]zn =

∑

w∈Ak

(1− (1− P (w)))zn =
∑

w∈Ak

P (w)z

(1− z)(1− (1− P (w))z)
.

To determine
∑

n≥0 E[X(sub)
n,k]zn, we use the cluster approach. The probability

generating function for the cluster of a word w is

ξw(z, t) =
tP (w)z|w|

1− t(Cw(z)− 1)
.

The probability generating function for the set of all words, with some of the w’s
distinguished, is Tw(z, t) = 1/(1− z − ξw(z, t)). Thus, the probability generating
function for the set of words with no occurrences of w is

1

1− z − ξ(z,−1)
=

Cw(z)

Dw(z)
,

where Dw(z) = (1− z)Cw(z) + P (w)z|w|. It follows that

∑

n≥0

E[X(sub)
n,k]zn =

∑

w∈Ak

P (w)z

(1− z)Dw(z)
.

These results were first derived in [3], but the cluster approach allows a much
more straightforward proof. Clusters allow quick verification of the probability
generating functions from [7], and clusters allow the new derivation of the relevant
probability generating functions for the variance of the profile of suffix trees and
the variance of the subword complexity. MDW has derived several more results
in this direction but did not have time to present these derivations during the
relatively short talk at MFO. These results will be presented in a longer version of
this paper in the near future, and we will complete the analysis using bootstrapping
for complex-valued singularities and then using residue analysis.

1272 Oberwolfach Report 23/2011

References

[1] A. Apostolico. The myriad virtues of subword trees. In A. Apostolico and Z. Galil, editors,
Combinatorial Algorithms on Words, pages 85–95, Berlin, 1985. Springer Verlag.

[2] F. Bassino, J. Clément, and P. Nicodème. Counting occurrences for a finite set of words:
combinatorial methods. ACM Transactions on Algorithms. To appear.

[3] I. Gheorghiciuc and M. D. Ward. On correlation polynomials and subword complexity.
Discrete Mathematics and Theoretical Computer Science, AH:1–18, 2007.

[4] P. Jacquet and W. Szpankowski. Autocorrelation on words and its applications. Analysis of
suffix trees by string-ruler approach. Journal of Combinatorial Theory, A66:237–269, 1994.

[5] P. Nicodème. q-gram analysis and urn models. Discrete Mathematics and Theoretical Com-
puter Science, AC:243–258, 2003.

[6] G. Park, H.-K. Hwang, P. Nicodème, and W. Szpankowski. Profiles of tries. SIAM Journal
on Computing, 38:1821–1880, 2009.

[7] M. D. Ward. The average profile of suffix trees. In The Fourth Workshop on Analytic
Algorithmics and Combinatorics (ANALCO), pages 183–193, 2007.

The Quicksort Process

Uwe Rösler

The sorting algorithm Quicksort, invented by Hoare ’61, sorts a given list of n
different reals. By now, we have a complete analysis of the running time, including
the distribution and large deviation results. Is there an online version of Quicksort
in the sense, that given the input of n different numbers, the online version provides
first the smallest number, then the second smallest and so on during time. That is
very easy to obtain, if we recall Quicksort every time for the list with the smallest
numbers. But what about a limit as n tends to infinity as a process?

The answer to this question will be yes, the details will be given in a forthcoming
paper by my PhD-student Mohammed Ragab. In this talk we discuss some related
problems and technics via the Weighted Branching Process.

Let Xn(l) denote the number of comparisons until the l-th smallest element
appears for the online version of Quicksort. Mathematically we can describe the
distribution of Xn(l) recursively by

Xn(l)
D
= n− 1 + 11In≤l(X

In−1
1 (In − 1) +Xn−In

2 (l − In)) + 11In>lX
In−1
1 (l)

Here In, Xk
i for i = 1, 2 and 0 ≤ k < n are independent. The distributions of

Xk
1 , X

k
2 , X

k are the same and In has the uniform distribution on {1, 2, . . . , n}.
By a result of Mart́ınez, [1], the expectation an(l) = E(Xn(l)) can be explicitly

calculated via the recursion and is

an(l) = 2n+ 2(n+ 1)Hn − 2(n+ 3− l)Hn+1−l − 6l+ 6

where Hn denotes the n-th harmonic number.
The natural normalization

Y n

(
l

n

)
=

Xn(l)− an(l)

n+ 1

