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Asymptotic Rational Approximation To Pi:
Solution of an “Unsolved Problem” Posed By
Herbert Wilf

Mark Daniel Ward †

Department of Statistics, Purdue University, 150 North University St., West Lafayette, IN 47907–2067, USA

The webpage of Herbert Wilf describes eight Unsolved Problems. Here, we completely resolve the third of these eight
problems. The task seems innocent: find the first term of the asymptotic behavior of the coefficients of an ordinary
generating function, whose coefficients naturally yield rational approximations to π. Upon closer examination, how-
ever, the analysis is fraught with difficulties. For instance, the function is the composition of three functions, but the
innermost function has a non-zero constant term, so many standard techniques for analyzing function compositions
will completely fail. Additionally, the signs of the coefficients are neither all positive, nor alternating in a regular
manner. The generating function involves both a square root and an arctangent. The complex-valued square root and
arctangent functions each rely on complex logarithms, which are multivalued and fundamentally depend on branch
cuts. These multiple values and branch cuts make the function extremely tedious to visualize using Maple.

We provide a complete asymptotic analysis of the coefficients of Wilf’s generating function. The asymptotic expan-
sion is naturally additive (not multiplicative); each term of the expansion contains oscillations, which we precisely
characterize. The proofs rely on complex analysis, in particular, singularity analysis (which, in turn, rely on a Hankel
contour and transfer theorems).

Keywords: analytic combinatorics, asymptotic analysis, rational approximation, generating function, singularity
analysis

1 Introduction
The webpage of Wilf (2009) contains a pdf file of eight “Unsolved Problems”. These include questions
about, respectively: series for π; growth of partition functions; a problem in asymptotics; the quadratic
character of binomial coefficients; Young tableaux; distinct multiplicities (among parts of partitions);
Toeplitz determinants; and chromatic number. These problems are extremely interesting to read and to
think about. We completely resolve the third of these eight problems:
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A problem in asymptotics Wilf (2009)
Let

f(z) =
arctan

√
2e−z − 1√

2e−z − 1
.

If f(z) =
∑
n≥0 anz

n, find the first term of the asymptotic behavior of the an’s.

One reason that the behavior of the coefficients of f(z) is so interesting is that each coefficient can be
written in the form an = bnπ − cn where bn’s and cn’s are nonnegative rational numbers. For example:

n an

0 1
4π

1 1
4π −

1
2

2 1
4π −

3
4

3 7
24π −

11
12

4 35
96π −

55
48

5 113
240π −

71
48

6 1787
2880π −

2807
1440

7 16717
20160π −

8753
3360

8 2257
2016π −

94541
26880

9 315883
207360π −

694663
145152

10 4324721
2073600π −

47552791
7257600

In fact limn→∞ an/bn = 0 and thus the rational numbers of the form cn/bn provide approximations to π.
Wilf’s 3rd Unsolved Problem is to find the precise first term asymptotic behavior of the an’s. The

analysis of f(z) is surprisingly very challenging, for several reasons:
1. The function f(z) is the composition of three simpler functions, arctan z

z ,
√
z, and 2e−z − 1. Unfor-

tunately, the innermost function, 2e−z − 1, has a non-zero constant term. In general, when the innermost
function in a composition has a non-zero constant term, many of the standard analytic combinatorics
techniques completely fail. See, for instance, Section VI.9, “Functional composition,” in Flajolet and
Sedgewick (2009).

2. The coefficients an are not all positive. The signs of the an’s alternate between positive and negative
in an erratic, non-systematic way. This prevents the analysis of f(z) using many techniques in enumer-
ative combinatorics that require the coefficients to be all positive or to systematically alternate between
positives and negatives.

3. The definition of f(z) involves a square root and an arctangent. Each of these functions are defined
over the complex numbers using complex logarithms, which are multivalued and fundamentally depend
on branch cuts. These multiple values and choices of branch cuts make the function extremely tedious to
visualize using the Maple 14 symbolic algebra software.

The method of analysis in this paper follows the precept of Painlevé (1900) and Hadamard (1945):
questions posed about real numbers can often be resolved using the methods of complex analysis. Flajolet
and Sedgewick (2009) and Szpankowski (2001) give systematic and comprehensive treatments about the
use of analytic (complex) techniques for many types of asymptotic analysis of algorithms, data structures,
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and other combinatorial and probabilistic applications. We rely on the techniques of singularity analysis,
as discussed in Flajolet and Sedgewick (2009).

2 Main Results
Let g(z) =

√
2e−z − 1. The definition of the square root function in the complex plane is ambiguous, up

to a possible change of sign, so we clarify the definition of g(z) very precisely. Let

Sj = {x+ iy | x, y ∈ R with 2jπ < y < 2(j + 1)π} ∪ {x+ 2jπi | x ∈ R with x < ln(2)}.

The regions Sj are disjoint and have the following property:⋃
j∈Z
Sj = C \

⋃
j∈Z
Lj ,

where Lj is defined as
Lj = {z = x+ 2jπi | x ∈ R, ln(2) ≤ x}.

(In Lemma 2.1, we will show that f(z) has an analytic extension to
⋃
j∈Z Sj .) Now we define g(z) very

precisely:

g(z) =

{
− exp( 1

2 log(2e−z − 1)) for z ∈ Sj , where j is an even integer;
+ exp( 1

2 log(2e−z − 1)) for z ∈ Sj , where j is an odd integer;

here, we define log (2e−z − 1) unambiguously by the following branch of logarithm: Write 2e−z − 1 =
reiθ for r ∈ R>0 and 0 ≤ θ < 2π, and then unambiguously define log (2e−z − 1) = ln r + iθ.

For arctan z = i
2 log i+z

i−z , write i+z
i−z = reiθ for r ∈ R>0 and −2π < θ ≤ 0, and then define

log i+z
i−z = ln r + iθ. This choice of the branch of arctan in the numerator of f(z) allows for an analytic

extension to L0 (as well as, automatically, an analytic extension to Lj for all even j). In contrast, with this
choice of branch of arctan, f(z) cannot be analytically extended to Lj for odd j. So R = | ln(2) + 2πi|
is the maximum radius around the origin for which f(z) has an analytic extension, because the closest
singularities to the origin will be at ζ = ln(2) + 2πi and its complex conjugate ζ = ln(2) − 2πi. The
asymptotic analysis of f(z) using analytic methods relies on having the largest possible disc, centered at
the origin, on which f(z) is analytic. So this choice of the branch of arctan is crucial for the analysis that
follows later, in Theorem 2.4.

Lemma 2.1 The function g(z) =
√

2e−z − 1 is analytic on C \
⋃
j∈Z Lj .

Lemma 2.2 The function f(z) is analytic on C \
⋃
j∈Z Lj . Moreover, an appropriate choice for the

branch of the arctan function allows f(z) to have an analytic continuation to
⋃
j∈2Z Lj; however, such

an analytic continuation will leave f(z) discontinuous on
⋃
j∈2Z+1 Lj .

Figure 1 illustrates the region on which f(z) is analytic, as in Lemma 2.2.

Theorem 2.3 Let an denote the coefficient of zn in the generating function f(z) = arctan
√
2e−z−1√

2e−z−1 ,
namely, f(z) =

∑
n≥0 anz

n. Then
an = R−nh(n),

where R = | ln(2) + 2πi|, and h(n) is a subexponential factor, i.e., lim supn→∞ |h(n)|1/n = 1.
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Fig. 1: Region of the complex plane for which f(x+iy) is analytic. The closest singularities to the origin are located
at ζ = ln(2) + 2πi and its complex conjugate ζ = ln(2) − 2πi. So the radius of convergence is R = |ζ|, and
CR :=

{
z
∣∣ |z| < R

}
is the largest open disc around the origin on which f(z) is analytic.

Rigorous proofs of Lemma 2.1, Lemma 2.2, and Theorem 2.3 are given in Section 3. The veracity of
Theorem 2.3 is also evident in Figure 2. Using an as in Theorem 2.3, the Maple plot in Figure 2 reinforces
our understanding that lim supn→∞ |h(n)|1/n = 1. To fully complete the solution of Wilf’s problem, we

Fig. 2: Maple plot of |h(n)|1/n = R|an|1/n = | ln(2) + 2πi|
∣∣∣[zn]f(z)∣∣∣1/n for 100 ≤ n ≤ 1000.

must precisely describe the first term of the asymptotic behavior of h(n) too. As we see in Theorem 2.4,
an is oscillating; this is also apparent in the figures.

Theorem 2.4 gives the complete description of the asymptotic behavior of the an’s. We follow the
notation from pages 381–384 of Flajolet and Sedgewick (2009) in the definitions of ek and λk,`.

Theorem 2.4 Let an denote the coefficient of zn in the generating function f(z) = arctan
√
2e−z−1√

2e−z−1 ,
namely, f(z) =

∑
n≥0 anz

n. Then for each positive integer N ,

an = −2π

N−1∑
j=0

dj
cos((n− j + 1/2) arctan(2π/ ln(2)))

Γ(−j + 1/2)Rn−j+1/2nj+1/2

(
1 +

N−j−1∑
k=1

ek( 1
2 − j)
nk

)
+O

(
1

RnnN+1/2

)
,

where dj = [zj−1/2](ez − 1)−1/2, and ek(α) =
∑2k
`=k(−1)`λk,`(α− 1)(α− 2) · · · (α− `), and λk,` =

[vkt`]et(1 + vt)−1−1/v , and R = | ln(2) + 2πi|.
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For instance, when N = 3 in Theorem 2.4,

an = −2
√
π

[
cos((n+ 1/2) arctan(2π/ ln(2)))

Rn+1/2

(
1√
n
− 1

8n3/2
+

1

128n5/2

)
+

cos((n− 1/2) arctan(2π/ ln(2)))

Rn−1/2

(
1

8n3/2
+

3

64n5/2

)
+

cos((n− 3/2) arctan(2π/ ln(2)))

Rn−3/2
3

384n5/2

]
+O

(
1

Rnn7/2

)
.

We prove Theorem 2.4 in Section 3. In addition to a formal proof, we include several figures that give
credence to Theorem 2.4.

Fig. 3: Maple plot of −
√
nRn+1/2 an

2
√
π

for 100 ≤ n ≤ 1000.

Figure 3 depicts the fact that the first additive term of the asymptotic behavior of an is − 2
√
π√

nRn+1/2

multiplied by some oscillating term, i.e., Theorem 2.4 gives the correct additive first order of an. For
other examples of such oscillations in asymptotic terms, see for instance: the section “Nonperiodic fluctu-
ations” (pages 264–266) or note VI.4 (pages 384–385) both from Flajolet and Sedgewick (2009). Figure 4
exhibits the normalized difference between an and the first three terms of the asymptotic expansion, from
Theorem 2.4. Figures 5 and 6 illustrate the fact that the asymptotic expansion of an must be expressed
additively, not multiplicatively. In other words, it is not true that an

−2
√
π

cos((n+1/2) arctan(2π/ ln(2)))
√
nRn+1/2

→ 1.

Since the cosine is occasionally extremely close to 0 (as seen by the spikes in Figures 5 and 6), the lower
order terms of the asymptotic expression will occasionally dominate the (otherwise) higher order terms.
These figures help provide insight into the asymptotic properties of an.

3 Proofs
Proof: (of Lemma 2.1) For z in the interior of Sj , the function g(z) =

√
2e−z − 1 is the composition of

analytic functions and is thus also analytic. So we only need to check that f(z) is continuous and analytic
on the boundary between Sj and Sj−1, i.e., for z = x+ 2jπi with x ∈ R<ln(2). We claim

lim
t→z

t∈Sj−1

g(t) = g(z) and lim
t→z

t∈Sj−1

g′(t) = g′(z).



596 Mark Daniel Ward

Fig. 4: Maple plot of Rnn7/2
(
− 2
√
π

[
cos((n+1/2) arctan(2π/ ln(2)))

Rn+1/2

(
1√
n
− 1

8n3/2 + 1

128n5/2

)
+

cos((n−1/2) arctan(2π/ ln(2)))

Rn−1/2

(
1

8n3/2 + 3

64n5/2

)
+ cos((n−3/2) arctan(2π/ ln(2)))

Rn−3/2
3

384n5/2

]
−an

)
for 100 ≤ n ≤ 1000.

Fig. 5: Maple plot of an

−2
√
π

cos((n+1/2) arctan(2π/ ln(2)))
√
nRn+1/2

for 200 ≤ n ≤ 1000.

Fig. 6: Maple plot of an divided by −2
√
π

[
cos((n+1/2) arctan(2π/ ln(2)))

Rn+1/2

(
1√
n
− 1

8n3/2 + 1

128n5/2

)
+

cos((n−1/2) arctan(2π/ ln(2)))

Rn−1/2

(
1

8n3/2 + 3

64n5/2

)
+ cos((n−3/2) arctan(2π/ ln(2)))

Rn−3/2
3

384n5/2

]
for 200 ≤ n ≤ 1000.
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(These properties are already clear for t ∈ Sj , so we only check for t ∈ Sj−1.) Define r, rt ∈ R>0

and θ ∈ R≥0 such that 2e−t − 1 = rte
iθt and 2e−z − 1 = r ∈ R>0. Then rt → r and θt → 0, so

log(2e−t − 1) = ln(rt) + iθt → ln(r) + 0i. Thus exp( 1
2 log(2e−t − 1))→ exp( 1

2 ln(r)) =
√
r. So

g(t) =
√

2e−t − 1 = exp

(
1

2
log(2e−t − 1)

)
→
√
r = g(z), for j even;

g(t) =
√

2e−t − 1 = − exp

(
1

2
log(2e−t − 1)

)
→ −

√
r = g(z), for j odd.

Thus g(z) is continuous at z. Since g′(z) =
(
− 1

2 + e−zg(z)
)
/(2e−z − 1), then g′(t) → g′(z). Thus,

g(z) is indeed analytic on C \
⋃
j∈Z Lj . 2

Proof: (of Lemma 2.2) The set {z = iy | y ∈ R,−1 ≤ y ≤ 1} is sent by the conformal map z 7→ i+z
i−z

to the line {z = x | x ∈ R≥0}; otherwise the image of z 7→ i+z
i−z is disjoint from {z = x | x ∈ R≥0}.

Therefore, log i+z
i−z is analytic on the set z /∈ {z = iy | y ∈ R,−1 ≤ y ≤ 1} (i.e., the branch cut is

avoided). Since g(z) is analytic for z ∈ C \
⋃
j∈Z Lj (shown in Lemma 2.1), and the range of g(z) is

disjoint from {z = iy | y ∈ R,−1 ≤ y ≤ 1}, it follows that f(z) = arctan g(z)
g(z) =

i
2 log

i+g(z)
i−g(z)

g(z) is the
composition of analytic functions and is thus also analytic for z ∈ C \

⋃
j∈Z Lj .

Let j be an even integer. We prove that f(z) has an analytic continuation to Lj . Each z ∈ Lj can be
written in the form z = x+ 2jπi for x ∈ R≥ln(2). Then 2e−z − 1 ∈ R≤0. We define

f(z) =

1
2 ln

1+
√
−(2e−z−1)

1−
√
−(2e−z−1)√

−(2e−z − 1)
for z = x+ 2jπi where x ∈ R>ln(2); and also f(ln(2) + 2jπi) = 1. (1)

Consider z ∈ Sj with z 6= ln(2) + 2jπi. If t ∈ Sj and with t→ z, then g(t)→ −i
√
−(2e−z − 1) so

f(t) =

i
2 log i+g(t)

i−g(t)

g(t)
→

1
2 ln

1−
√
−(2e−z−1)

1+
√
−(2e−z−1)

−
√
−(2e−z − 1)

=

1
2 ln

1+
√
−(2e−z−1)

1−
√
−(2e−z−1)√

−(2e−z − 1)
.

Similarly, for t ∈ Sj−1 with t→ z, we have g(t)→ i
√
−(2e−z − 1) so

f(t) =

i
2 log i+g(t)

i−g(t)

g(t)
→

1
2 ln

1+
√
−(2e−z−1)

1−
√
−(2e−z−1)√

−(2e−z − 1)
.

Also, f(z) is continuous at z = ln(2) + 2jπi, and the derivative of f(z) exists and is continuous (all of
this is straightforward to check), so the definition in (1) is an analytic continuation of f(z) for z ∈ Lj .

For odd j, an additional analytic continuation of f(z) to Lj is not possible. Consider z = x + 2jπi
for x ∈ R with x > ln(2). Then 2e−z − 1 ∈ R<0. Thus, for t ∈ Sj with t → z, we have g(t) →
i
√
−(2e−z − 1) so

f(t) =

i
2 log i+g(t)

i−g(t)

g(t)
→

1
2

(
ln

1+
√
−(2e−z−1)

1−
√
−(2e−z−1)

− 2π

)
√
−(2e−z − 1)

=

1
2 ln

1+
√
−(2e−z−1)

1−
√
−(2e−z−1)

− π√
−(2e−z − 1)

.
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Similarly, for t ∈ Sj−1 with t→ z, we have g(t)→ −i
√
−(2e−z − 1) so

f(t) =

i
2 log i+g(t)

i−g(t)

g(t)
→

1
2

(
ln

1−
√
−(2e−z−1)

1+
√
−(2e−z−1)

− 2π

)
−
√
−(2e−z − 1)

=

1
2 ln

1+
√
−(2e−z−1)

1−
√
−(2e−z−1)

+ π√
−(2e−z − 1)

.

Thus, f(z) is not continuous, and thus not analytic, at z = x + 2jπi for odd integers j and x > ln(2).
Similarly, f(z) is discontinuous at ln(2) + 2jπi for odd j. 2

Proof: (of Theorem 2.3) By Lemma 2.2, the radius of convergence of f(z) about the origin is exactlyR =
|ζ| = | ln(2) + 2πi|. Indeed, on the boundary of CR, the function f(z) has non-removable singularities
exactly at z = ζ = ln(2) + 2πi and z = ζ = ln(2)− 2πi. So the radius of convergence of f(z) about the
origin is exactly R. The classical Exponential Growth Formula (see, e.g., Flajolet and Sedgewick (2009))
provides a natural correspondence between the radius of converge of any function f(z) and the rate of
growth of the function’s coefficients: If f(z) is analytic at all points in an open disc of radius r about the
origin, but has a non-removable singularity on the boundary, then the coefficients an = [zn]f(z) satisfy
an = r−nh(n), where h is a subexponential factor, i.e., lim supn→∞ |h(n)|1/n = 1. 2

Proof: (of Theorem 2.4) We use the theory of singularity analysis from Flajolet and Sedgewick (2009).
In particular, we use Theorem VI.5 from page 398 of Flajolet and Sedgewick (2009), which we quote:

Theorem VI.5 (Singularity analysis, multiple singularities). Flajolet and Sedgewick (2009)
Let f(z) be analytic in |z| < ρ and have a finite number of singularities on the circle |z| = ρ at
points ζj = ρeiθj , for j = 1..r. Assume that there exists a ∆-domain ∆0 such that f(z) is analytic
in the indented disc

D =

r⋂
j=1

(ζj ·∆0),

with ζ ·∆0 the image of ∆0 by the mapping z 7→ ζz.
Assume that there exists r functions σ1, . . . , σr, each a linear combination of elements from

the scale S, and a function τ ∈ S such that

f(z) = σj(z/ζj) +O(τ(z/ζj)) as z → ζj in D.

Then the coefficients of f(z) satisfy the asymptotic estimate

fn =

r∑
j=1

ζ−nj σj,n +O(ρ−nτ?n),

where each σj,n = [zn]σj(z) has its coefficients determined by Theorems VI.1, VI.2 and τ?n =
na−1(log n)b, if τ(z) = (1− z)−aλ(z)b.

For the function f(z) = arctan
√
2e−z−1√

2e−z−1 in Wilf’s problem, f(z) is analytic in the open disc CR :={
z
∣∣ |z| < R

}
. On the boundary of CR, the function f(z) has non-removable singularities at z = ζ, ζ. In
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the notation in Flajolet and Sedgewick (2009), we have ζ1 = ζ and ζ2 = ζ, as well as ρ = R. We define
the ∆-domain

∆0 =

{
z

∣∣∣∣ |z| < | ln(2) + 6πi|
| ln(2) + 2πi|

, z 6= 1, | arg(z − 1)| > arctan(2π/ ln(2))

}
.

By using the domain in which f(z) is analytic, established in Lemma 2.2, we see that f(z) is analytic
throughout the domain D = (ζ ·∆0) ∩ (ζ ·∆0). Fix a positive integer N . Then we can define

σm(z/ζm) = − π√∑N
j=1(ζm − z)j/j!

for m = 1, 2 (i.e., for ζ1 = ζ and ζ2 = ζ),

τ(z) = (1− z)N−1/2,

and we have the required conditions

f(z) = σm(z/ζm) +O(τ(z/ζm)) as z → ζm in D, for m = 1, 2.

Let dj = [zj−1/2](ez − 1)−1/2, so {d0, d1, d2, . . .} = {1,− 1
4 ,

1
96 , . . .}. (Note that (ez − 1)−1/2 is the

square root of an exponential generation function for the Bernoulli numbers.) Then

σm(z/ζm) = −π
N−1∑
j=0

dj(ζm − z)j−1/2 +O(ζm − z)N−1/2, for m = 1, 2.

For instance, if N = 3,

σm(z/ζm) = −π
(

(ζm−z)−1/2−
1

4
(ζm−z)1/2 +

1

96
(ζm−z)3/2

)
+O(ζm−z)5/2, for m = 1, 2.

The explicit asymptotic expansions (1 − z)−α are also well-known (we follow the notation from pages
381–384 of Flajolet and Sedgewick (2009)),

[zn](1− z)−α ∼ nα−1

Γ(α)

(
1 +

∞∑
k=1

ek(α)

nk

)
,

where ek(α) is a sum of polynomials in α of degrees between k and 2k (thus, the overall degree of ek(α)
is 2k),

ek(α) =

2k∑
`=k

(−1)`λk,`(α− 1)(α− 2) · · · (α− `),

and λk,` = [vkt`]et(1 + vt)−1−1/v . Thus, the coefficients an of f(z) satisfy the asymptotic estimate

an = −π
N−1∑
j=0

dj
ζ−n+j−1/2 +

(
ζ
)−n+j−1/2

Γ(−j + 1/2)nj+1/2

(
1 +

N−j−1∑
k=1

ek
nk

)
+O

(
1

RnnN+1/2

)
.
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In the case N = 3, we explicitly compute the asymptotic expansions:

[zn](1− z)−1/2 =
1√
πn

(
1− 1

8n
+

1

128n2
+O(n−3)

)
;

[zn](1− z)1/2 = − 1√
πn3

(
1

2
+

3

16n
+O(n−2)

)
;

[zn](1− z)3/2 =
1√
πn5

(
3

4
+O(n−1)

)
.

It follows that the coefficients an of f(z) satisfy the asymptotic estimate

an = −
√
π

[(
1

ζn+1/2
+

1(
ζ
)
n+1/2

)(
1√
n
− 1

8n3/2
+

1

128n5/2

)
+

(
1

ζn−1/2
+

1(
ζ
)
n−1/2

)(
1

8n3/2
+

3

64n5/2

)
+

(
1

ζn−3/2
+

1(
ζ
)
n−3/2

)(
3

384n5/2

)]
+O

(
1

Rnn7/2

)
.

To simplify these expressions, we note that, for a = n− j − 1/2,

Ra(ζ−a +
(
ζ
)−a) = (ζ/ζ)a/2 + (ζ/ζ)a/2

= exp
(a

2
log
(
ζ/ζ
))

+ exp
(
− a

2
log
(
ζ/ζ
))

= exp

(
− ia

i

2
log

i + 2π
ln(2)

i− 2π
ln(2)

)
+ exp

(
ia

i

2
log

i + 2π
ln(2)

i− 2π
ln(2)

)
= exp(−ia arctan(2π/ ln(2))) + exp(ia arctan(2π/ ln(2)))

= 2 cos(a arctan(2π/ ln(2)))

So it follows that

an = −2π

N−1∑
j=0

dj
cos((n− j + 1/2) arctan(2π/ ln(2)))

Γ(−j + 1/2)Rn−j+1/2nj+1/2

(
1 +

N−j−1∑
k=1

ek( 1
2 − j)
nk

)
+O

(
1

RnnN+1/2

)
.

For example, when N = 3,

an = −2
√
π

[
cos((n+ 1/2) arctan(2π/ ln(2)))

Rn+1/2

(
1√
n
− 1

8n3/2
+

1

128n5/2

)
+

cos((n− 1/2) arctan(2π/ ln(2)))

Rn−1/2

(
1

8n3/2
+

3

64n5/2

)
+

cos((n− 3/2) arctan(2π/ ln(2)))

Rn−3/2

(
3

384n5/2

)]
+O

(
1

Rnn7/2

)
.

For more terms in the asymptotic expansion, the method of analysis proceeds in exactly the same way. 2
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