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Abstract

Consider N balls that are distributed among V' urns according to some distribution
G. We do not see the outcome and now have to place one ball into one urn with the goal
of maximizing the probability that it will be the left-most urn containing a single ball.
How should we proceed?

This is the urn-model translation of an interesting problem posed by an internet-
auction offered by a German real-estate company. In the real problem only V is known
(upper-price limit), whereas neither G (the way in which participants choose their offer)
nor N (number of offers) is known. We would like to make an offer in such a way to
maximize the probability that it turns out to be the minimum of the random set of single
offers. We face a two-sided problem. On the one side we would like to choose a model
which is convincing in terms of the expected behaviour of participants. On the other side,
we want to solve an optimization problem; that is, the model should also be tractable and
allow for asymptotic expansions, leading to a computable algorithm. Our attack is based
on arguing that G should be (essentially) geometric and that some information on E(N)
(expectation of N) and V(N) (variance of N) can be obtained in practice. Under certain
conditions on possible dependencies of G and N, we can give answers. Poissonization
(namely, changing the number N ofballs from a fixed quantity into a random quantity
with Poisson distribution and mean N) and dePoissonization (i.e. reconciling with the
original model) play here an important role to make the answers explicit.

Keywords: Urn model, unique minimum, Poisson approximation, asymptotic inde-
pendence, asymptotic expansions, dominant terms, game theory, internet- auctions.

1 Introduction

Let X1, X5,... be a sequence of discrete-valued nonnegative integers, and let N be a non-
negative integer-valued random variable (RV) with distribution function F. Given N = n,
we suppose that Xi,..., X, are independent, identically distributed random variables (iid

RV) with discrete distribution function G,, on the positive integers. Our objective is to fix
an additional value X = X, ;1 (say) which has maximum probability of being the smallest
among those values X1, Xo, ..., X, +1, which are unique. Hence if
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Figure 1: The number of balls in urn K denotes the number of submitted offers of K cents.
V' is the upper offer limit (in cents). The offer of 4 cents is here the winner because it is the
smallest single offer. Urns close to V' are naturally very likely to be empty.

n
Ay = Xp: Y [X;=X] =17,
j=1
then our goal is to find a value X in the support of G,, such that

n
X = arg max PlX< minAn,Z[[Xj =X]=0]1,

{Xe supp G} =

and to find an algorithm to compute efficiently an asymptotic value of X.

Motivation

There are concrete applications behind this problem. The first we mention is an internet-
auction which one may call “inverse auctions”, and which attracts a great deal of interest
(see e.g. traumhause.de on the internet; traumhaus means dreamhouse). A house is put on
auction (with photos and an upper price estimation V). Offers can be made in form of any
nonnegative Euro/cents amount < V. Thus, for instance, €0 or €1.47 are admissible offers
but €1.471 or V + 1 are not. In the version we have seen on the net, V' was €350, 000.00
and only the true buyer had to pay. After a bidding period of several months, the bidder
with the smallest unique offer gets the deal. The description of the rules become somewhat
less transparent if all offers are bid at least twice. This is why we concentrate on the true
objective to make the smallest single offer which we want to activate with the highest possible
probability.

Similar auctions or lotteries are now advertized in many places and seem to attract a lot
of attention. The Karlsberg brewery for instance gives for each purchase of a case of their
new “Urmild” beer the right to make an offer for a sports car, and the smallest single offer (if
any) wins the car. Here the offers must be made in integer values of Euros. This shows that
the advertizers have an adequate intuition about the right relationship between the number
of “urns and balls” to make the problem intellectually interesting.

The sports car lottery example of Karlsberg brewery is likely to be an excellent advertizing
campaign; moreover, it may directly increase sales since each purchase gives the right to make
a new offer. Hence the motivation is here very clear. In the house auction example, the value
of the prize is much higher and so one may wonder how such an auction can possibly be
rewarding for the party who offers it. This party is a real estate company, and advertising



aspects may again play a central role. Moreover, offers can be made by pay-phone which seems
to be used frequently in particular since several offers can be made by the same person. Each
participant is allowed to make more than one offer by calling or in writing, but not more
than one per day.

Other versions of such auctions seem to us even more interesting. Unlike in the house
auction where only the actual buyer of the house has to pay the money he or she offered we
now assume that any offer which is made must be paid immediately with some entrance fee
(with no return if it is not successful). This is like buying a ticket in a lottery and the offers
can be expected to be smaller than in the first version, but now ticket prizes vary, and the
buyer has full control of what ticket he buys! We see a good chance of this type of auction to
be profitable or even very profitable for the one who offers it, and it may be only a question
of time until it appears on the internet. This is why we try to be before our time and look
also at this version and refer to it as version 2.

Novelty of the problem

We are not aware of any closely related problems in the literature. The so-called “unique
maximum problem for i.i.d. random variables” which has attracted a great deal of interest
(see e.g. Bruss and Griibel [2] for references) may sound somewhat similar but is a true
maximum problem. Unlike our problems studied here, it has no strategic component to
inject an extreme value in a random set.

The paper is organized as follows. Section 2 proposes an urn model, where each urn
corresponds to one offer. We are led to a geometric distribution (with parameter p) for the
distribution of offers. Two cases are analyzed: one where the participants want to have a
certain win probability P;(v) = 1 — 7, say, the other one where we consider the event that
urn K is empty, and all urns before K do not contain exactly one ball. The probability of
this event is denoted by P»(K) and we want to maximize it. Section 3 proves the unicity of
the maximum. Section 4 assumes that the participant has to pay immediately his offer in
order to make it active. Section 5 is devoted to the case where p depends on the number n of
participants. Section 6 considers another type of dependence of p on n. Section 7 concludes
the paper.

2 Proposing a model

The difficulty of the essence of the problem (in both versions) is the fact that only the upper
price limit V is known. To get explicit answers we need the distribution of the number of
offers and also of the amount of offers, without which the optimization problem is not well
defined. Hence we must first discuss aspects of the model. We confirm here our interest to
the house auction. The reasoning would be similar for the sports car auction or offers of this

type.

Modelling aspects

We first note that, in order to make the real-word problem meaningful, the distribution
of offers G and of the number of offers F' cannot be chosen independently. A trivial coun-
terexample is G(1) = P( offer < 1) = 1, in which case more than 1 participant would not
try to make offers. Hence it is probable that nobody would in the end make offers. A similar
reasoning shows that we should allow for no gaps, that is, the support of G should be [1, V],



that is, G should be stricly increasing to 1 on [1,V]. Indeed, suppose that the hypothesis
of certain gaps was justified. Then there would be a smallest urn number for which it were
justified. But then, individually, everybody had an interest to place there an offer which
contradicts the hypothesis.

Now first some thoughts on N. By observing previous auctions, it should be possible to
estimate E(N). One feels that modelling N by a binomial RV —and hence in the limit by a
normal RV— should be the first choice. Indeed, if we know that approximately n people can
read the auction on the internet, we may estimate the success parameter p of the binomial
distribution by p ~ E(N)/n. However we do not want to be too restrictive and therefore ask
only for certain moments conditions for N to hold.

Now back to modeling offer sizes. We think that somebody who offers €100.17, say,
would not be less willing to increase (upon advice) his offer to €100.89 , say as somebody
else would be to increase from €1.17 to €1.89, say. Hence we believe that the memoryless-
property should generally hold true except, possibly, near the upper price limit V. These
three conditions support assuming G to be (truncated) geometric, and this will be our first
method of attack.

We will model the possible offers by urns, and the number of offers by the total number
of balls in those V urns.

We first look at the case where the success parameter of the geometric distribution
GEOM(p(n)) is fixed.

The case of fixed p

Let N denote the number of offers with mean m, variance o2, 0 = o(m?). Distribution
of offers: geometric, pg*~!. More generally we assume that the tail is of the form Cq’. We
will also assume that m is large: all our asymptotics are computed as m — oc.

Set

2

K := index of the urn where we want to throw our ball (i.e. place our offer),
and let
N*:= Np/q,
m* :=mp/q,
2 o222
Q@ :=1/q,
L:=1n(Q) = —In(g),
log :=log,
and finally

U
N =m*+U=m" <1+ *>
m
Of course, E(U) = 0,V(U) = 0*? by definition.
We now formulate the moments conditions described beforehand and assume that the
central moments p1, := E(U¥) are such that py = o(m*~2)a2. Also, for simplicity, we suppose

that U is distributed on integers, with distribution p(u). Set 7 := %qK . The probability



Py (K|N = n) that no offer coincides with K is given by (1 — 7)", conditioned on n offers.
Set u

with
£ :=u/m",

and also

K =logm* +v.
This gives

m*¢® = e ' = E, say,

and

nr=E(1+¢).

Also, the absolute probability of no offer coinciding with K is
P (K =X o)1= 1)

We now use the by Poisson approximation to estimate P;(K). (See, for instance Barbour et

al. [1]).
We define

%@%zﬂ—wﬁu@m{—E—Es—;Ei+O<<;>+O(£o}

)+o(m)y 2)

E2 2E2

NeE[l—sE—p + +O<
2qm* 2

where O() are functions of E. We obtain of course the Gumbel distribution as the dominant

term. So

—2Lv 2
—Lv Iy U € ( U ) b
g 1-— —) - o
plu exp ] [ ¢ m* + 2 [ m* qm*] + ]

—LU] 67(2Lv) o*2 p
2 m*2 qm*

= exp [—e_L”] + 0+ exp [—e
This is the starting point for Version 0. We give one specific example.

2.1 Version 0

We assume in this Version 0 that participants want to have a certain win probability Pj(v) =
1 —n, say. Assume 02 = O(m) and let first

= Bm*.

Set
v="04y/m" +...,



with exp(—e %) = 1 —n, or e ¥ = —1In(1 — ). Then we obtain after straightforward
computation

&= —In[~ In(1 — n))/L,

and

Now we must find v,, such that
Py (Un) =1-n

We only give one example. The choice ¢ = 1/2,3 =1 (hence 79 = 0), n = 0.2 and a Gaussian
distribution for N, with mean m = 1000, gives, from (1), a numerical value v, = 2.18...,
and © =2.16..., K = [logm* + 9| = 12.

As a comparison, what is the probability that a uniformly placed offer on {1,2,...,V}

would be minimal among the unique offers?

Optimal strategies for uniform hypothesis

Recall that V' (upper price limit) is known. We want to compute our optimal offer (that
is, the one which maximizes the probability to win) under the hypothesis that the number of
offers N is known (N = n) and that these offers are uniformly distributed on {1,2,...,V}.
Our offer is the offer number n + 1 and we can choose it as we want. Note that if different
people make the same given offer, then these events must be seen as different events. Hence
we have to use the classical urn model of distributing distinguishable balls in (distinguishable)
urns. The probability that an offer K which we make is single equals (%)n (independently
of K);

P( no urn before K is singly occupied)

= 1 — IP(3 a single-occupied urn before K)

=1-P(S1USU...USkg_1) where S; := {jth urn is singly-occupied}
K-1

=D P(S)+ D) P(SNSy) — .+ (“DFTIR(NFTS))

1 J1<j2
Kzof(_l)i<K;1> <n?1!z'>! (vl—l)i<vv_:i>“' N

So it is evident that we have to offer K = 1: the probability of all preceding occupied urns
to be ocupied by at least 2 balls is decreasing in the number of preceding urns. (We can also
verify this argument by showing the (4) is decreasing in K).

This comparison helps us to understand the bidder’s behaviour trying to optimize their
offer. They want to make small offers to increase the probability of their offer to be the small-
est single offer. However, surmizing that all bidders would reason similarly, the conclusion is
to avoid values which are too small. Thus, as n increases, the concentration around 1 must
decrease.

I
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2.2 Version 1

Consider the event that urn K is empty, and all urns before K do not contain exactly one
ball. The probability of this event is denoted by P»(K). We will use asymptotic independence
of urns, as far as fixed numbers of balls are concerned, as proved in Louchard, Prodinger and
Ward, [5]. We must carefully study the effect of the dispersion of U around its mean 0. We
have, with

q
Py(v) ~ Y plu)(1 —m)" {H [1 = nm(@) (1 - ()" ] } : (5)
u i=1

The product should go to K, but, as proved in [5], the error is exponentially negligible.
The numerical optimal value of (5), ¢ = 1/2,m = 1000 is given by v, = 0.55..., with
Py(v,) =0.263.... A plot of Py(v), using (5), is given in Figure 2.
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Figure 2: P5(v). This graph presents the probability that the Kth urn is empty and all
non-empty urns with number smaller than K contain more than one ball. Here K is scaled
to K = logm™* + v.

Now (we drop the i—dependence, to ease the notation)

nm=E(l+¢),

E2  pE 1 e
1—7)" L ~exp |-E— Ee— L o(— O(—)
(1—m) oxXp [ ¢ 2gm* + gm* + m*2 + m*

~ e E [1—gE—pE(_2+E)+€2E2+O<i)+O< c )]

2qgm* 2 m*2 m*

Note that the 1/m* term is different from the one in (2). This leads to

I I 672Lv p672Lv
P5(v) ~ exp [—e "] zu:p(u) [1 —e e+ 5 e — Sqm +.. } X




g . , —2L(v—1) —L(v—i) .
% { (1 — exp |:_e—L(v—z):| [1 - e—L(U—z)6 + € 5 52 _ p€2 . 24 e—L(v—Z):| + ...
=1 qm

e F=I[1 4 5]) } . (6)

This shows that the dispersion of K around logm™* is O(1). Set

aq(i,v) := —exp [—e_L(”_i)] ,
ag(i,v) == —e MO,
—2L(v—1)
as(i,v) == eT’
(i, v) = e L=,
a5 = 1,
ag = 0, but this will be # 0 in Sec. 5,
ar(v) :== —e_L”,
6—2LU
ag(v) := 5
—2L(v—1i) )
ag(i,v) = —L5 — [9 4 e~LO-),
2q
—2Lv
. _bpe
Oél()('U) T 2(] )

a11 = 0, Again, this will be # 0 in Sec. 5.
The bracketed term within P»(v) (see (6)) becomes

o .
{H (1 +an(i,v) [1 T asli, v)e + as(i,v)e + 280 } (i, v) [1 + ase + age? +
m

=1

an1
mx*

)

This can be written as

{H <A0(2’,v) AL 0)e + Al 0)e? + 300 > } ,

; m*
=1
with
AO(iv ’U) =1+ al(% U)Oé4(’é, U)a
A1(i,v) = a1 (i, v)ag (i, v)ay (i, v) + a1 (i, v)ay (i, v)as,
AQ(iv ’U) =01 (’L, U)Oé4(i, U)aﬁ + al(iv ’U)Ozg (’L, U)Oé4 (’L, U)Oé5 + o (’L, U)Oé3(i, ’U)O‘4(iv ’U)v
A3(i7 /U) =0 (/L7 ’U)Oé4(2, U)[QQ (/L7 ’U) + all]'
Set

Bk(iv U) = Ak(lv U)/AO(i7 U),



and
(o]

Do(v) == [ [ Aoli,v).

=1

The bracketed term becomes

{Do(’u) H |:1 + Bl(i,v)s + BQ(Z.7’L))52 + % —+ .. :| }

=1

- {Do(v) [1 + S1e+ [S2 + S7/2 — S12/2] 2 + % S } } :
with
Si(v) = iBl(i,v),
SNOZii&@w%
Sm@OZE?Bﬂ%W,

Ss(v) =Y Bs(i,v).
1

All these sums are easily shown to converge. So we get finally

Pafo) ~ Fofw) + T2,
with
Fy(v) = exp [—e_L” Dy (v), (7)
Fi(v) = exp [—e_L”] Dy(v) {B[S2 + S2/2 — S19/2 + S1(v)ar(v) + as(v)] + [e10(v) + S3(v)]} .
(8)

To obtain max, P»(v), we first compute ¥ as the solution of Fj(?) = 0. With our usual
choice of parameters (see Section 2.1), a plot of Fy(v) is given in Figure 3. This leads to
= 0.5613032851 ..., Fy(3) = 0.2642452648 . .., K = |logm* + 7| = 10.

A comparison between Py(v) and Fy(v) is shown in Figure 4, where it seems that Fy(v)
dominates P»(v) on [0, 2].

Then we set

V=0+-——+...,
m
and
Pi(v) =0
This leads to .
F}(D) + 1(0) _ 0,
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Figure 3: Fp(v)

or
F{(v
1= = }/( ~) )
Fg(0)
(v - Fi(v
P) ~ Fo(o) + 20 ) 4 T
To summarize, the algorithm works as follows.
Algorithm 1
Input: p,m, B
Output: second order optimal value for K : K
Solve F{(v) = 0;
Compute v; = B
_1 Fé/(f)) )
Compute K = [logm* + 0 + 2 |;
End
With our choice of parameters, we compute v; = 1.07903.... As K must be an integer,

we see that the correction in our example is practically negligible .

3 Uniqueness of the Maximum
Please note that we cannot assure so far, that the the candidate for this maximum is unique.
Let us work with the simple case L =1, so

oo

Fy(v) = exp[—e™ "] H {1 — exp {—67(1’7")} ef(vfi)} )

i=1

10
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Figure 4: A comparison between P5(v) and Fy(v)

We will deal with the logarithm, ie

LFy(v) = —e"+ iln {1 — exp [—e_(”_i)} e_(”_i)} , (9)
i=1

and observe the following
i) First we observe numerically that LFj(v) possesses a maximum at ¢ = 0.7983134948 . ..
with LFy(0) = —1.024695735.... A plot of LFy(v),v € [-0.2..4] is given in Figure 5. We
have used a >%° summation.
ii) Next, we see that an excellent approximation for LFj for v € [0..4] is given by i = 1..5.
Indeed,

E (v—1) (v—1) Eoo (4—1) (4—i)
_ _ v—1 —(v—1 _ T —1 — —1
d ln[l exp[ e ]e ] d ln[l exp[ e }e ]

This justifies using 22° summation in(9) for numerical computations.
iii) Also, for v < 0, we have

< = 0.0045767767 . ..

LFy(v) < LFy(0) = —1.202264688 . ..

iv) For v > 4, we see that we can practically limit the sum to

[v]+2

Z In [1 — exp [—e_(”_i)] e_(l’_i)] ,

max{|v]—13,1}

which entails an asymptotic periodicity.

11
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Figure 5: LFy(v),v € [—0.2..4]

Indeed, for |v] < 13, the lower bound of the summation remains 1. Next set j = |v]| — 1.
For [v] > 13,

lv]—1 o0
Z In [1 — exp [—eij] efj] < Zln [1 — exp [—efj} efj] =1.31...1074,
j=14 14

and, for any v,
-3

> In[l—exp[-e7]ed] =-380...107.

j=—00

Again, this justifies using Zi’o summation . A plot of LFy(v),v € [4..12] is given in Figure
6, showing the asymptotic periodicity for large v. We could analyze the periodicity in detail
with Mellin transforms (see, for instance Flajolet et al. [3], or Szpankowski [6]) but we will
not pursue this matter further on here.

v) We conclude that the maximum (unique or not) occurs for some v € [0..1].
vi) A similar analysis of LF{(v),v € [0, 1] shows that it is strictly < 0 in this range, proving
the unicity. We have uniform convergence of the righthand side of (9) on [0,1], so we can
differentiate term by term. A plot of LE{(v),v € [0..1] is given in Figure 7.

vii) Finally, the effect of Fj(v)/m*, for large m*, does not destroy the maximum unicity.

4 Version 2

Here the participant has to pay immediately his offer in order to make it active. Thus the
expected gain by offering K is P,(v)V — K, so that the objective is to find

max|[Py(v)V — K] = max[Ps(v)V — v — logm™],
(2 v

12
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Figure 6: LEy(v),v € [4..12]

with v and m™* as before. Set
:17+72/V—|—....

v
This leads, with the dominant term (7), to

1

Yo =—— =—12.71...
Fy'(0)

Again, as K must be an integer, we see that the correction in our example is practically
negligible with our choice of parameters.

5 Version 3. p,q depend on n

We now let p and ¢ depend on n, where our problem stays as before. We could reason as
follows. The mean offer is given by K = ¢/p. The participant wants to specify the probability
that the offer K = ¢/p is unique. We consider the case where this probability is given be
some real, 1/2 say. This means that ¢ must depend on n. Set ¢ = e~¢. This leads to

w =Lk,
q
K ~1/e,

1/2 ~ (1 —ee %)™,
or
1/2 ~ exp [-nee '] .

Hence
In(2)

e ln’

13



—14

Figure 7: LE](v),v € [0..1]

So we choose q(n) = e~ ¢/" for some constant C, p(n) = 1 — ¢(n). Now we set N =
m + U,V(U) = 2. The probability P;(K) that urn K is empty is given by

S plu)(1 — 7).

Setn=m+u=m (1 + %) This gives then

_ P(1) —cu/(1+e)
q(n)

)

if we set K = mu (the scale is of course different from Sec.2.2). and € = -*. Set

Py(v) = (1—m)"
We have

Py(v) ~ exp [—Ce—C“ [1 + Cve + (—Cv + (Co)” )e? + ClL+e7] + .. ”

2 2m
1 1
~ exp [—Ce_C”] [1 — C?vee Y + [C’%e‘cv — 503026_0” + 504026_%‘”} g2

C2e—Cv [1 + e_C”] ]
— + ...

2m
Set
a7 (v) == —C?ve™ OV,
ag(v) := CPve= — %C?’U%_C” + %C4v26_20”,

CZeva [1 + eva]
5 .

ap(v) == —

14



5.1 Asymptotic dependence of the urns

We first consider the model in which the balls are independent, and each ball has a GEOM(p(n))
distribution, with p(n) = 1 — e~/". In other words, the probability that a ball lands in the
ith urn is exactly p(n)g(n)"~! (usually abbreviated as 7 (7)), where ¢(n) = e=/". If k balls
are placed into the urns, then let X;(k,n) = 1 if exactly one ball lands in the ith urn, and
Xi(k,n) = 0 otherwise. In other words,

Xi(k,n) := [ value ¢ appears among the & GEOM p(n) RVs exactly once ].

Define X (k,n) = ;2 Xi(k,n). So X(k,n) denotes the number of urns that each contain
exactly one ball (when starting with & balls, and each ball has GEOM(p(n)) distribution).
In order to obtain the asymptotics of X (n,n), we consider a similar model, where each
ball has a GEOM(p(n)) distribution, but there is a random number of balls placed into the
urns, which is Poisson distributed with mean 7. Let N, = Poisson(7) denote the random
number of balls placed into the urns. Then the urns are all independent, and the ith urn
contains a Poisson number of balls with mean 77 (7). In analogy to our notation above, we

define

Xi(7,n) := [ value i appears among the N, GEOM (p(n)) RVs exactly once ].

Then define X(r,n) = > X;(r,n). So X(r,n) denotes the number of urns that each
contain exactly one ball (when starting with N, balls, and each ball has GEOM(p(n)) distri-
bution).

We first consider M, (7) := E(X(r,n)). We compute

0 " o e*TTk
=Y P(N: = KEX(r,n) | Nr = k) = Y ——E(X(k,n))
k=0 k=0

and also
Mn(T) =K (Z XZ(T,H)) = ZE ZTT( 77'7r(z
i=1

In summary,

- € Tk 77'7rz
> S E(X (k,n) = Zm

Now we consider Uy (7) := E(X2(r,n)). Similar reasoning yields

-7

ie k'T X2 k,n) ZTTI’ _T”(Z <1+ZT7T e )

k=0 J#i

5.2 Diagonal DePoissonization

In this section, we compute E(X (n,n)) and E(X?(n,n)) by first randomizing the number of
balls using Poissonization. Of course, we must precisely compare the randomized model to
the original model.

15



5.2.1 Diagonal dePoissonization Theorem

We first recall the Diagonal dePoissonization Theorem from Jacquet and Szpankowski,

Diagonal DePoissonization Lemma. (Jacquet and Szpankowski, [4])

Let ﬁ’n(T) be a sequence of Poisson transforms of fj , which is assumed to be a sequence
of entire functions of 7. Consider a polynomial cone C := {7t =z + iy : |y| < z}. Let the
following two conditions hold for some A > 0, B, and « > 0, &, and ~:

(I) For 7 € C and || < 2n,

|F(r)| < Bn®,
(O) For 7 ¢ C and |7| = n,
|E(7)e™| < nY exp(n — An®) .
Then, for large n, B
fn,n = Fn(n) + O(nﬁil)
and more generally, for every nonnegative integer m,

m i+m

Fan =3 > bin'EF) (n) + O(nf~m1)

=0 =0

where F, (n) denotes the jth derivative of Fj,(7) at 7 = n, and where the b;; are defined
by Bj(z) = Y, bijz’ and Bj(z) = [y7](e*¥(1 + y)®). (The relation of the coefficients b;; to
Poisson-Charlier polynomials and the Laguerre polynomials is also described briefly in [4].)

5.2.2 Comparison of Expectations

First we check (I) and (O) for F,,(7) = M,(7) and f}, = E(X (k,n)). For r € C,

7_)‘ _ ) < Z |T‘7T(Z-)€—§R(T)7r(i) < ‘7—| Zﬂ'(’[/) = |T‘ < 2n.
=1 =1 =1

For 7 ¢ C with |7| = n,

|Nn(7-)e7" = < |eT|Z‘T|ﬂ- —R(7)m(3) nen/\/i'

e’ Z Tr(i)e”
i=1

Thus (I) and (O) are both satisfied (with 8 = 1) for Fy,(7) = MH(T) So, by the Diagonal

dePoissonization Lemma we conclude that, for every nonnegative integer m,

m i+m
E(X(n,n) =Y bin' HE(X(r,n)) 0™,
=0 j=0
In particular, when m =1,
E(X(n, 1)) = B(X(n, ) — 30 M) + nbll(n) + O(n). (10)



We note that Méﬁ(n) = % (=7(@))Te D (nx(i) — j) = O(n~7+). In particular, the

7

%nﬂ/{’(n) term above is O(n~!). Thus, (10) simplifies to

~ 1 — B
E(X(n,n)) = E(X(n,n)) — §nM7'{(n) +0(n™h). (11)
We use Euler-Maclaurin summation to compute
~ > A o0 . 1 N
E(X(n,n)) =Y nr(i)e ") = / nw(i)e "™ di — 5m(z’)e—m(l) +0(n™Y. (12)
i=1 1 i=1

The integral evaluates to l_gcn — %Ce*C + O(n™1). Also, the Euler-Maclaurin correction

term is — %mr(i)e_"”(i) ‘oo =1Ce %+ 0(n™'). So the mean in the Poisson model is

=1

~ 1—e ¢

E(X(n,n)) = c

Next, we compute the correction term between E(X (n,n)) and E(X (n,n)). We have

n+4O0(n 1. (13)

—%nm(n) = —%n /100(—77(1'))26—””@)(7177(@) —2)di+0(n7 1Y) = %Ce_c +0(n7Y. (14)

By (11), we simply add (13) and (14) to obtain the expectation in the dependent model:
—C
—e

C

In particular, E(X(n,n)) and E(X(n,n)) both have leading terms 178_071. On the other

hand, E(X(n,n)) also has $Ce™C as a constant term, but E(X (n,n)) does not have a ©(1)
term.

E(X(n,n)) = »

1
n+ 5ce—c +0(n™h). (15)

5.2.3 Comparison of Variances

Now we check conditions (I) and (O) for Fj,(7) = Uy(7) and fen = E(X?(k,n)). We see that
(by the same type of reasoning that we used above for M, (7)) for 7 € C, |Un(7)| < 4n2 + 2n,
and for 7 ¢ C, Uy (T)em| ~ e"/VZp2. Since (I) and (O) are both satisfied (with 5 = 2) for
F,. (1) = Uy,(7), then by the Diagonal dePoissonization Lemma we conclude that, for every
nonnegative integer m,

m i+m
E(X%(n,n)) = > Y byn' ZEX*(r,n))|  +0(n'™™).
i=0 j—=0 T=n
In particular, when m =1,
~ 1 ~ 1 ~
E(X?%(n,n)) = E(X?(n,n)) — 5nU;{(n) + gnU;{’(n) +O(1). (16)

For ease of notation, we define R, (1) := 3.5, (77(i))2e 2. We note I (nm(i))2e= 270 dj =
%n — 1C%72¢ + O(n™1). Additionally, the Euler-Maclaurin correction term is
—% (Tﬂ(i))26_27”(i)|zl = %026_20. Thus

o) = (

1—e 20 _90Ce2C
4C

> n+4O0(n1). (17)

17



Also R!(n) = O(n™1) and R”(n) = O(n™2).
We compute

E(X2(n,n) Zmr )e ) (1 +3 na(j)e ) ) = M,(n)? + My(n) — Rn(n). (18)
J#i

From (13), it follows that the second moment in the Poisson model is

~ 1—eC\?2 90e—2C 13 _ 4o=C 4 o—2C
E(X2(n,n)):< Cf )n2—|—<06 +34C€ te )n+0(1). (19)

We also compute

1 ~ — ~ 1 —~ 1
—5n0(n) =~ (n)? = ndu ()M (n) — S0l () + snRi(n)

1 ~ — o~ 2 ~ o~ 1 ~ 1

S (n) = 200L ()AL (n) + Sna(m) M () + 5l (n) = g0 (n)  (20)

We again use Euler-Maclaurin summation:
My(n) = —e“+ 0™
Mg(n) =—Ce “nt+0(n?
)=—-C%n"24+0(n?) (21)

y (16), we simply add (19) and both parts of (20) to obtain the second moment in the
dependent model:

_—C\ 2 _ —2C _4.—C —2C el
E(XQ(n,n)):<1ce >n2+< 6Ce — +3 4ZC+€ +aCe )n—l—O(l). (22)

In particular, E(X2(n,n)) and E(X2(n,n)) both have leading terms (#)Qn% but the
linear (i.e., ©(n)) terms are different in the dependent versus Poisson models.
It follows from (15) and (22) that the variance in the original (dependent) model is

_ —-2C _ -C —-2C
V(n,n) = ( 20e " + 34046 te ) n+0(1). (23)

5.3 A direct approach to the correction term (without Poissonization)

In this section, we want to verify our computations. So we compute X (n,n) directly, this
time without using Poissonization. (We simply perform a brute-force computation!) We use
7(i) := p(n)q(n)*~! throughout the discussion below. First, we make a direct calculation of
the mean. We compute

Zm (1 — (i Zm e (14 W(i)—(:w(i))Q/2>

By using Euler-Maclaurin summation, we have $°°°, n(i)e () = 1=¢— o I O(n~1). Sim-
ilarly, >, nﬂ(i)e_””(i)M ~e CC/2.

n

18



Thus
1—e©

C

E(X (n,n)) = n+ %Ce_c + oMY,

which completely agrees with (15).
Now we turn our attention to the variance. We have

V(X (n,n)) => Y E(Xi(n,n)X;(n,n)) + E(X(n,n)) — E(X(n,n))>. (24)
i=1 j£i
We just computed E(X(n,n)), so we focus on computing the double sum. We have
Y EXi(n,n)Xj(nn) = > Y n(n— Da(@r(i)[1 —x (i) —7()]" 77, (25)
i=1 j#£i i=1 j#i

which is asymptotically

yr(@)m(j)e " 7mY)

2
NE
3
=
L

@
Il

—
<
Il

—

+ 2
n

X
7
—_

2nm (i) + 2nm(j) — nr(i)nm(j) — 3(n(i)® — %(nﬂ(j))2>

(26)

dnm(i) — 2(n7r(i))2>

n

|
12
3
E)
L

.
Il
—

)W(i)2€—2n7r(i) <1+

We use Euler-Maclaurin summation to analyze the right-hand side of (26). The double sum
on the right-hand side of (26) simplifies to

1—eC\?
( e > n? + (e —2)e2n+0(1). (27)

We also use Euler-Maclaurin summation to compute

, — =20 _ 901e—2C

> n(n—m(i)?e >0 = (1 e 20 ) n+O(1) (28)

i=1
and
> nw(i) — 2(nm(i))2 —20? — — 3 4 e2€¢
Zn(n_l)ﬂ(i)Qeanﬂ'(i) <4 () 712( ()) ) ~ < 2C 2C 4é+40 + )eZC _ O(l)
i=1

(29)

Finally, equation (24) tells us exactly how to easily combine the equations (25)-(29). As a
result, we obtain

_ —-2C _1,—C —-2C
Vinn) = ( 2Ce +34C46 +e >n—|—0(1),

which completely agrees with (23).
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5.4 Diagonal Exponential dePoissonization

In this section, we analyze the asymptotic dependence of the urns, by comparing the dis-
tributions of X(n,n) and X (n,n). To do this, we first estimate E(zX(™). We emphasize
that we are unable to use the dePoissonization theorem from the previous sections, because
E(zX (T’”)) has exponential growth in terms of n. Due to this fast growth, we need to use a
stronger version of dePoissonization.

For some reasons that will be clear later on (see Section 6), we will analyze the more

general case ¢ = e /" 0 < K < 1.

5.4.1 Diagonal Exponential dePoissonization Theorem

We adapt the Diagonal Exponential DePoissonization Theorem from Jacquet and Szpankowski.

Diagonal Exponential DePoissonization Theorem. (Jacquet and Szpankowski, [4])

Let ﬁn(T) be a sequence of Poisson transforms of fj,,, which is assumed to be a sequence
of entire functions of 7.

Consider a polynomial cone C(D) := {7 =z +1iy : |y| < Dz}, with 0 < D < 1. Consider
log F},(7) that exists in the polynomial cone C(D). Let the following conditions hold for some
A>0,B>O,%§ﬂ<%,anda>ﬁ:

(I) For T € C(D) and (1 — D)n < |7| < (1 + D)n,

|log F,,(7)| < Bn”;
(O) For 7 ¢ C(D) and |7| = n,
|Fo(7)e™| < exp(n — An®) .

Then, for all € > 0, we have

fn = Fu(n) exp | =5 (L (m))?] (1 +0m*2+)),
where Ly, (7) = log F,,(7) and L’ (7) = F'.(7)/E,(7).

5.4.2 Comparison of the Distributions
Now we check (I) and (O) for Fj,(7) = E(z X(r, ) and f, = E(zX#E™). We first note that

—7 -k

i ¢ k:'T E(zx(k’")) ﬁ [1 +(z—=1Dr7(i)e _T”(i)] i (30)
k=0

=1

We fix 0 < £ < 1, and afterwards we consider only z such that |1 — z| < £. In all of the
calculations below, we are careful to make sure that the claims hold uniformly in terms of z
with |1 — 2| < £. Also, for technical reasons that will be clear below, we choose D > 0 such

that s + € < 1.
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First, we consider 7 € C(D), and we check condition (I). All bounds and asymptotic
estimates below hold uniformly for all T € D(D). We compute

|10gﬁn(7'7 Z)‘ =

log ﬁ [1 +(z — 1)m(¢)gm<i>]
=1

o¢]
<7/2+ 3 log |1+ glrfn(i)e MO0

i=1

<T/24 &> |rlm(i)e RO (31)
=1

Notice 325, |7|m(i)e ®7™@) grows asymptotically no faster than

V14 D2n (1 —exp(—=R(7)(1 — e V/™)).

We note that (1 — D)n < |7| < R(7)V1+ D2, so \/%n < R(r). Thus, |log Fy(7,2)] is

asymptotically (ignoring lower-order terms) at most

n —exp| ———==n .
P V1+D?
So condition (I) holds for each § with k < 3. Since we also need % <pB< %, we are specifically

restricted to £ < 2. We write 8 = max{3, x}.
Now we consider 7 ¢ C(D) with |7| = n, and we check condition (O). We compute

o0
‘ﬁn(T, 2)67—‘ — GTH |:1 + (Z o 1)T7T(,L')6—T7T(i)]
i=1
< exp §R é‘nz §R(T m(7) >
~ exp (R(1) +&n) (32)
We recall that 0 < £ < 1; also, R(7) < ﬁn for 7 ¢ C(D). Thus R(7)+&n < mn+§n

Since \/ﬁ + ¢ < 1, then condition (O) is satisfied.

So conditions (I) and (O) in the Diagonal Exponential DePoissonization Theorem have
been verified.

Now we explicitly compute the correction factor exp [—— (L’ L(n ))2} We compute

= i (z = D (j)e"™ [1 = nm(j)] [1 +(z— 1)n7r(j)e_””(j)]_
j=1
- _% (1 £t ot (n(’z — 1) exp(ne™ /") (/™ — 1) + exp(1/n" + n)))

n exp(1l/n® +n)

o —1/n"\/ 1/n% _
1 (1 TR (1 I 4 4 2= Dexp(ne ) (e 1)))

=n"(z—-1) exp(ne_l/”n —1/n" — n)(el/”n -1)
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~ (z — 1) exp(ne /™ —1/n" —n) (33)

We note that ne='/"" —1/n"* —n ~ —n'=* — 1/n*, and thus

n

exp (~5 (L)) ~ exp (~5 (2 — )22,

For k < % and 8 = max{%, k}, we conclude that

n

E(ZX("’")) = E(ZX("’")) exp { 5

(L, (n))?] (1 + O(n*=279)).
We emphasize that all of our bounds and estimates are uniformly valid for all z in the disk
|1 — z| <&, and & does not depent on n; thus, for k < % and 8 = max{%,n}, we conclude

that
n

2

which proves the asymptotic independence of the urns in the case k < 2/3.

E(zX0) = B(zX0) exp [ 2(L5, . (0)2] (1+ 0725,

5.5 Looking for an optimum

We are now ready to tackle the optimization problem for Py(v), g(n) = e~ /",

The covariance between two urns is asymptotically 0. Nevertheless, we have a correction
to the Poisson variance of order n. However, as we will see, Version 3 is not interesting, so, we
do not want to be completely precise and, in first approximation, we will assume asymptotic
independence of urns. Proceeding now as in Sec. 2.2, we deal with the bracketed term in
P(v). We have K — i =mv —i =m(v —i/m). After some algebra, this leads to

{ﬁ <1 — exp [—Ce_c(”_i/m)} [1 +ar(v —i/m)e + ag(v —i/m)e* + M] X

. m
=1

x Cle~Clv=i/m) [1 +C(v—i/m)e + [—C(v —i/m) + M] g2 + %] ) } . (34)

with
Ce Cv [C’ +Ce Cv — 2]
5 .

Note again that aqs is different from ag in (6). Note also that the product is now limited to
K: the urns up to O(m) do have a similar (Poisson) behaviour.

Oélg(v) = —

We put
aq(i,v) := —exp —Ce_c(”_i/m)] ,
as(i,v) == az(v —i/m),
as(i,v) == ag(v —i/m),
ay(i,v) := Ce C=t/m)
a5(i7 ’U) = C(/U - Z/m)7
200 i )2
a(i,v) 1= ~C(v — ifm) + LT



ag(i,v) := aqe(v —i/m),
all(i,v) = %

This translates into

Py(v) ~ exp [_Ceicv] Z p(u) [1 + az(v)e + ag(v)e® + alo(v)] X

m

v {ﬁ <1 + o (i, ) {1 + ag(i,v)e + az(i,v)e? + %] ay4(i,v) [1 + a5(i,v)e + ag(i, v)e® + %D }
i=1
~ Fy(v) + FlT(v)’

where Fy, F are given by (7),(8), with the new expressions for & and the sums in S go to
K.
We can now proceed as in Section 2.2. We will limit ourselves to the dominant term, i.e.

Py(v) ~ Fy(v),
Fy(v) = exp [-Ce™ Y] Dy(v),

K
DO(”) = HAO(% U)a
i=1
where

Ag(i,v) = 14 ay(i,v)as(i,v) = 1 — exp[—Ce CW=1/M)Ce=Cl0=i/m),

By Euler-Maclaurin, we conlude, setting (v —i/m) = n, that

Po(6) ~ exp [~Ce exp [ [ n 1= exp [~Cem7] o) ]
0

After a detailed analysis, this shows that for sufficiently large m, namely,
m > m*, with m* = —C?/In [1 — C’e_c], the probability P»(v) is stricly decreasing, and
hence no optimum is attainable.

Choosing q(n) = e~/ is definitively too strong.

6 Version 4. p,q depend on n

Co(n) — efC/n

If we try g(n) = e~ , we can remove the absurdity related to ¢(n) by carefully

choosing d(n). For simplicity, let C' = 1. We change the scale into
K = po(m) + ¢1(m)v,

and we want (we deal with the mean of N, i.e. m)
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Limiting our interest first to the dominant term yields

mar ~ mé(m)e 000 m)+ei(m] (35)
Choose here
(m) = =
901 (5(m) )

and

For instance, if

then we have
or equivalently

and

Eq. (35) leads now to

as expected.

6.1 Poissonization

As above, we first consider the model in which the balls are independent, and each ball has
a GEOM(p(n)) distribution, with p(n) = 1 — =%, here, §(n) = 1/n* and & < 1. So the
probability that a ball lands in the ith urn is exactly 7 (i) := p(n)q(n)"~!, where q(n) = e,
If k£ balls are placed into the urns, then we define

Xi(k,n) := [ value ¢ appears among the K GEOM p(n) RVs exactly once |,

and X (k,n) = > 2, Xi(k,n). So X(k,n) denotes the number of urns that each contain
exactly one ball (when starting with & balls).

As before, in order to obtain the asymptotics of X (n,n), we consider a model with a
Poisson number N of balls placed into the urns (where N; has mean 7). We define

X;(7,n) := [ value i appears among the N GEOM (p(n)) RVs exactly once ].

Then define X(r,n) = Sy Xi(r,n). So X(r,n) denotes the number of urns that each
contain exactly one ball (when starting with N, balls).
As before, we consider M, (1) := E(X(7,n)) and U,(7) := E(X?(7,n)). We have

Z k' X(k,n)) = ZTW —7 ()
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and
—T

Z e k'T E(X2(k,n)) = Up(r) = ZTW(i)e_T”(i)<1 +ZT7T(j)e_T7r(j)>,
=0 i=1

JFi

6.2 Diagonal DePoissonization

We compute E(X (n,n)) and E(X?(n,n)) in a manner similar to the one used in the previ-
ous section. We note that both of these functions satisfy the requirements of Jacquet and
Szpankowski’s Diagonal dePoissonization Theorem stated earlier, with 8 values “1” and “2”
(see the discussion in the previous section; the details do not change here).

Since E(X (n,n)) satisfies conditions (I) and (O) (with 8 = 1) for F,(r) = M,(7), then
by the Diagonal dePoissonization Lemma we conclude that, for every nonnegative integer m,

m i+m
E(X(n,n)) =YY byn' BEX(r,n)|  +0n™™).
i=0 j=0 =n
In particular, when m =1,
E(X(n,n)) = E(X(n,n)) — ~nd"(n) + 2ndl”(n) + O(n"Y). (36)

2 3

We note that Mé”(n) = Y2 (—m(@)7 e @D (nn(i) — 5). (In fact, each of the correction
terms in (36) decay exponentially in terms of n. In particular, the £nM;”(n) term above is
not only O(n~1!) but in fact exponentially small in terms of n.) Thus (36) simplifies to

~ 1 ~
E(X(n,n)) = E(X(n,n)) = gnMy(n) +---. (37)
We use Euler-Maclaurin summation to compute

o0

o
, 1 ,
§:m —nm(i) _ / na(i)e ™ di — Can(i)e 0| 4o (39)
1 =1
The integral evaluates to

n"(1 — exp(n(e” ™ = 1)) = n® — n"exp(—n""") + - ;

also, the lower-order terms, and all correction terms, decay exponentially in terms of n.
Thus, the expectation in the Poisson model is

E(X(n,n)) ~n". (39)

Next, we use Euler-Maclaurin summation to compute the correction between E(X (n,n))
and E(X (n,n)), namely

~ M) ~ —gn [ (w@)e O un(i) - 2)di
1
— %n1+1€ exp(n(eil/nn _ 1))(1 _ 2671/11“ + 672/11“)
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=O(n' " exp(—n'""), (40)

and thus decays exponentially in terms of n.
By (37), we simply add (39) and (40) to obtain the expectation in the dependent model:

E(X(n,n)) ~n".

In summary, E(X(n,n)) and E(X (n,n)) are each asymptotically n*, and the difference be-
tween E(X (n,n)) and E(X (n,n)) is at most O(n™1).

6.2.1 Comparison of Variances

Now we check conditions (I) and (O) for F,(7) = Uy (7) and fen =E(X?(k,n)). We see that
(by the same type of reasoning that we used above for M, (7)) for 7 € C, |Uy(7)| < 4n? + 2n,
and for 7 ¢ C, \(7 (T)e™| < e¥/V2en? for some ¢ > 0. Since (I) and (O) are both satisfied
(with 3 = 2) for F,,(r) = Uy (), then by the Diagonal dePoissonization Lemma we conclude
that, for every nonnegative integer m,

m i+m
E(X?(n,n) Zwan FE(X%(r,n)) +O0(nt=™).

T=n
1=0 7=0

In particular, when m = 2,

E(X2(n,n)) = E(X?(n,n)) — %nﬁg(n) + %nﬁ{{’(n) + %nZﬁg”(n) +0(n™Y.  (41)

For ease of notation, we also define Ry, (1) := Y52, (77(i))2e =27, We note
1 K —1/n" —1/n" 1 K
R, (n) ~ —" (exp(2n(e —1))(2n(l —e )+ 1) —1) ~ 2"

Also we note that RJ(n), R} (n), and R]/(n) are each ©(n'™* exp(—2n'~")).
We compute

E(X2(n,n)) an e ™ | 14> " nr(j)e ™) | = M, (n)? + My(n) — Ru(n). (42)
J#i

From (39), it follows that the second moment in the Poisson model is

E(X?(n,n)) ~n + %n“, (43)

and the error terms have exponential decay in terms of n.
We also compute

1~ — o 1 — 1
—inU,/{(n) = —nM/ (n)*> — nM,(n)M!(n) — §nM7/1/(n) + §nRZ(n)
1~ - 2 — - 1 — 1
gnU,/l”(n) = 2nM) (n)M] (n) + gnMn(n)M,/{/(n) + gnM,CL”(n) — gnRz/(n)
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1
8

!

8n2RZ”(n)

(44)

~ 3 ,—~ — 1y~ 1 5~
n?U" (n) = ZnQMT’{(n)2 +n2M! (n)M (n) + ZnZMn(n)M,CL’”(n) + gnQMT’{” -
We recall, from the Euler-Maclaurin summation in (40), that
Mg(n) = —n"exp(n(e V™ —1))(1 — 27" 4 e72/"") = O(n " exp(—n'TF)).
Similarly, we use Euler-Maclaurin summation to compute the following:

M;,(n) ~ n®exp(n(e”/"" = 1))(1 = e7/"") = O(exp(—n'~"))
M"(n) ~n"exp(n(e /™ —1))(1 — 3¢~/ 4 3¢72/"" — ¢=3/"") = ©(n~"* exp(—n'~"))

Mgﬁ(n) ~nfexp(n(e™ /™" —1))(1 — 4e™ V" 4 672" — 473" 4 MY = O(n P exp(—n!TH))

(45)

By (41), we simply add (43) and all three parts of (44) to obtain the second moment in the
dependent model:

E(X2(n,n)) = n2* + %n“ + oM.

In particular, E(X2(n,n)) and E(X2(n, n)) each are asymptotically n2* + 3p*. The difference
between E(X?(n,n)) and E(X?(n,n)) is at most O(n~1).

6.3 A direct approach to the correction term

Now the correction term is more interesting: all contributions are asymptotically 0 (we
omit the details). Everything fits with previous computations. However, here, we have
no constraints on « < 1. So we conjecture that far all 0 < x < 1, we have asymptotic
independence of urns.

The dominant term of mean and variance are given by the Poisson approximation, i.e;

E(X(n,n)) ~n", V(X (n,n)) ~ n".

6.4 Looking for an optimum for P (v),q(n) = e /" 0 < r < 2/3

Again, we proceed as in Section 2.2. Limiting ourselves to the dominant term, we have

Fy(v) = exp [—e™"] Do(v),
Do(v) == [ [ Aoli,v),
=1

where ‘ ‘
Ag(i,0) = 1+ ay(i,v)ay(i,v) = 1 — exp|[—e~ (V7H/M)]g(v=i/m")

Numerical experiments show that we must take v << 0. This entails

e (W=i/m") S5
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and hence '
exp {—ef(vfl/mn)] << 1,

and also | |
In(Ap(i,v)) ~ — exp [_e—w—z/mf@)} o~ (v—i/m").

Using Euler-Maclaurin, we obtain, setting (v — i/m”) = n,

v
Py(v) ~exp [—e "] exp [—m“/ exp [—e7"] e_”dn] . (46)
—00
By taking logarithms, maximizing P,(v) leads to
e ¥ —m"exp[—e e’ =0,
or
exp [—e f’] =1/m",
that is i
eV =In(m"),
and so
0 = —In[In(m")] << 0 as expected (47)
We want now Py = P (7). Set n = & — 7. From (46) we obtain
v oo ~ _
—m“/ exp [—e "] e dn = —m“/ exp[—e "TT|e "t dr.
— 0 7=0
Set now

Go = —v = In[In(m")],
G = %0 = In(m"),

e 1 =1/m",

€ = Uu.

This gives then
o o0
—m“/ exp [-G1e"] GieTdr = —m"/ Gie 1,
0 u=1

and hence, after a straightforward computation
—mfe Gl = —1.
So, finally
. 1,
P2 ~ We . (48)
Remark: We have tried to understand whether the factor 1/e has a simple explanation,

but we are not able to find an analogy of the problem to a problem of sequential selection.
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Also

0] < p1(m),
K = @o(m) + p1(m)o = (1 — k)m”~ In(m) — m* In[In(m”] = m*[(1 — k) In(m) — In(In(m)) — In(x)] > 1.

A plot of P5(v), using (5), with x = 1/2,m = 1000 is given in Figure 8. This leads to
v, =—1.24... Py(v,) = 0.0117.... We also obtain o = —1.24..., P, ~ 0.01164..., K = 70.

—

0.0116 7

0.0114 7

0.0112 q

0.0114

0.0108 7

0.0106 7

0.0104 4

0.0102 7

0.011

14 “135 -13 “125 12 “115 11

Figure 8: Py(v) for the case g(n) = e~ /7"

A correction to the dominant term can be computed. We derive, with ¢ = u/m,

—v

Py(v) ~ exp[—e™"] [1 - 2€m” —e e[l — Kk + kv
2
+e? 52 [35211 — kv — K=KV F Rkt eV 4+ 2 kv — 2¢ VK + e Vk20? — 2e VK20 + €7v/ﬁ12]

1 1
+O< . >+O<—> +O(3)].
m=r m m
We see here that the dominant term is related to the # term. This is independent from (.
Similarly, we obtain (up to the required precision )
(1—m)" e~ (1 —m)",

and
2

_ 1 € 9
nmw~e v[1+W—i—€[1—m+m}] —RE[—l-i-Iﬁ) + v — 3kv + K]
So, finally, the dominant term of bracketed in P»(v) becomes

-~ —(v—1i/m") ef(vfi/m“) —(v—i/m") 1
H 1 — exp |:—€ i| 1 — W e ]. + Qm’{ . (49)

=1
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and

B eV ~ ot e—(v—i/m")
Ps(v) ~exp [—e™"] [1 - 2m”} {H (1 — exp [—e (v=¢/ )] [1 T

i=1

] o (o—ifm") [1 N

We must now compute the solution v of 9, In(P,(v)) = 0. Proceeding as above, this leads to

1+ L —m"ex [—676] 1—6_73 1+ L =0
2mk P 2mk 2me |
Indeed, taking logarithms in (49) only induces an extra term of order
exp[—2e Y)e 2 = O (hl(mm)g) which does not affect (50).

mQra
Set therefore

This gives the dominant equation

|4t —e—”[1—7ln(mﬁ)+”} [1+ ! }:0,

2m»

which is asymptotically equivalent to

In(m*) 1
1 —(1- 1- =
+2m“ ( 77)[ 2mkr ] [ +2m“] 0
Therefore
In(m*)
n ome
ie.
e " ~In(m") [1 - !
2m*
or again
0 ~ —In[In(m")] + L 0+ =
2m» 2m»
and B .
K~K+1)2.

(50)

As K must be an integer, we see that the correction is practically negligible with our choice

of parameters. To summarize, the algorithm works as follows.

Algorithm 2

Input: C,k,m

Output: second order optimal value for K : K
Compute v = — In[ln(m")];

Compute K = ¢o(m) + @1 (m)o ;

Compute K = | K + 1/2];

End
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7 Conclusion

The problem studied in this paper may be seen as a game where each player of an unknown
number of players can choose infinitely many actions in the sense that he/she can choose
a distribution in an (uncountable) set of distributions according to which to place his/her
offer. There is no other constraint than that the support of his/her choice cannot exceed
[1..V]. Hence the only approach to such a problem we see is to assume that individual
strategic behaviour (to maximize the probability of placing the minimum single offer) leads
to a common distribution for all players. We gave several good reasons why a (truncated)
geometric distribution should model the situation more suitably than other choices, although,
clearly, our arguments depend more on exclusion of unreasonable distributions than on actual
preferences. Our next step was to assume some knowledge about E(N) and the variance of
N, because, as we argued, with no information on N whatsoever, we still would have an
ill-posed problem.

With these assumptions, the problem is sufficiently well defined to allow the search of
an optimum. Finding in practice the optimum is seemingly only possible via asymptotic
expansions and algorithms with which we can give, as we have seen, explicit answers. We
conclude, there is no good rule of thumb for the optimal choice, that is there is no easy answer
without calculation. However, in some cases, the effort is clearly rewarding. The optimum
is frequently distinguishably better than some random choice in regions we may think of as
being reasonable.

The general difficulty of the problem has, as we should add saying, one game-specific
advantage. Since these results would probably be perceived as “too mathematical” by the
large majority of participants, we do not expect any serious danger of distortion by publishing
them.
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