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Abstract

We investigate the average similarity of random strings as captured by the average
number of ‘cousins’ in the underlying tree structures. Analytical techniques including
poissonization and the Mellin transform are used for accurate calculation of the mean.
The string alphabets we consider are m-ary, and the corresponding trees are m-ary trees.
Certain analytic issues arise in the m-ary case that do not have an analog in the binary
case.
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1. Introduction

The similarity of strings is an important area, with numerous applications in data processing
(comparison of computer files and various types of text) and computational biology (similarity
of species on the hereditary scale by comparing DNA strands).

The trie is a data structure suitable for the storage, representation, and retrieval of—as well as
supporting algorithms on—strings or digital data keys (bits, hexadecimal strings, words, DNA
strands, etc.), which abound in science and technology. The trie was introduced in [3] and [11]
for information retrieval. Tries also provide a model for the analysis of several important
algorithms, such as radix exchange sort [14, Section 5.2.5] and extendible hashing [8].

Tries are usually defined recursively over a collection of strings composed of symbols from
an alphabet

A = {a1, . . . , am}.
If a node of a trie contains zero strings then the node is empty and does not appear in the trie
structure. If a node contains exactly one string then the node is called a leaf or external node.
If a node contains more than one string then the node is internal to the trie and the node has
one or more descendants, each of which is also a trie. When splitting the strings from a node
on the j th level of a trie into their proper locations in various nodes on the (j + 1)th level, the
splitting depends on the (j + 1)th characters of the strings; the �th subtree contains all of the
node’s strings having the form x1x2x3 · · · such that xj+1 = a� ∈ A.
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Now we present the usual recursive definition of a trie. For a collection C of words with
characters from A, we write Ca to denote the set of all words in C that begin with the letter a.
The set Ca \ a denotes the collection of words from Ca with the initial a removed from each
word. The recursive definition of a trie is

trie(C) =

⎧⎪⎨
⎪⎩

φ if |C| = 0,

� if |C| = 1,

〈trie(Ca1 \ a1), trie(Ca2 \ a2), . . . , trie(Cam \ am)〉 if |C| > 1.

The notation ‘�’ represents an external node (one that stores a key), and 〈., ., . . . , .〉 stands for
a tree rooted at an internal node and having the subtrees given in the list of arguments.

An example is helpful to illustrate the definition. A trie built from the twenty strings

S1 = 101010100111011 . . . , S11 = 100010100100000 . . . ,

S2 = 001111001101010 . . . , S12 = 010010100111001 . . . ,

S3 = 100100000100101 . . . , S13 = 000001101011011 . . . ,

S4 = 000010111011100 . . . , S14 = 011010001000101 . . . ,

S5 = 100100110011010 . . . , S15 = 100001101001111 . . . ,

S6 = 000100001001101 . . . , S16 = 110101111000100 . . . ,

S7 = 010001000011011 . . . , S17 = 111110111110001 . . . ,

S8 = 111111001011101 . . . , S18 = 110101111100100 . . . ,

S9 = 111011000010111 . . . , S19 = 001000100101000 . . . ,

S10 = 111110010011000 . . . , S20 = 110111011011110 . . . ,

has the form given in Figure 1.
In this paper we consider tries consisting of n independent keys each drawn from A∗ (the

set of all words on A). We write

P(aj ) = pj

as the probability of selecting the j th letter of the alphabet (of course,
∑m

j=1 pj = 1). For
convenience, we assume, without loss of generality, that the probabilities are arranged in
increasing order, i.e. p1 ≤ p2 ≤ · · · ≤ pm. In other words, we build a trie from n strings; the
rth such string has the form

Yr,1Yr,2Yr,3 · · · ,

where Yr,j ∈ A for each pair r, j and all of the Yr,j s are selected independently, so

P(Yr,1Yr,2Yr,3 · · · Yr,j = a�1a�2a�3 · · · a�j
) = p�1p�2p�3 · · · p�j

.

We will assume that pj is positive for j = 1, . . . , m. This avoids degeneracy and superfluous
situations: if pj is 0 for some j , it will mean that the j th branch of the tree never receives any
keys, and there is no j th subtree, i.e. no internal node will have a j th subtree, so the tree is
actually an (m − 1)-ary branching structure.
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Figure 1: Example of a trie.

2. Scope

In tree structures built on n keys we enumerate the number Xn,k of subtrees on the fringe
that each contain k > 1 keys. A subtree with k keys is ‘on the fringe’ if it has no proper
subtree that also has k keys. For instance, if k = 2 then Xn,2 denotes the number of pairs
of siblings (i.e. 2-cousins). If k = 3 then Xn,3 denotes the number of families containing
a pair of siblings and a nearest cousin; we refer to the two siblings and their nearest cousin
collectively as a set of 3-cousins. In general, Xn,k denotes the number of k-cousins. In the
example given in Figure 1 there are seven sets of 2-cousins ({S13, S4}, {S19, S2}, {S7, S12},
{S15, S11}, {S3, S5}, {S16, S18}, {S10, S17}), four sets of 3-cousins ({S13, S4, S6}, {S7, S12, S14},
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{S16, S18, S20}, {S10, S17, S8}), two sets of 4-cousins ({S15, S11, S3, S5}, {S9, S10, S17, S8}), two
sets of 5-cousins ({S13, S4, S6, S19, S2}, {S15, S11, S3, S5, S1}), etc. So X20,2 = 7, X20,3 = 4,
X20,4 = 2, X20,5 = 2, etc. in this example.

We consider the expected value of Xn,k in tries constructed from independent strings. Our
analysis uses generating functions, poissonization and depoissonization, the Mellin transform,
and singularity analysis. It is customary in this type of problem to set up a functional equation
for the exponential (poissonized) generating function and solve it asymptotically via the Mellin
transform. We use here an alternative approach derived from combinatorics on words, in which
we find the poissonized generating function directly and in explicit form.

The results contain the data entropy function

h = h(p1, . . . , pm) = −
m∑

j=1

pj ln pj .

The main result of this paper is the following.

Theorem 1. Let Xn,k denote the number of k-cousins in an m-ary trie built over n independent
keys from an m-ary alphabet {a1, . . . , am} with probabilities P(aj ) = pj . Then

E[Xn,k] = 1 − ∑m
j=1 pk

j

k(k − 1)h
n + nQk(n) + o(n),

where Qk(·) is a small oscillating function (possibly 0).

The rest of this paper is organized as follows. In Section 3 the general methodology is
overviewed, where we briefly discuss the Mellin transform and its inverse, and the poisson-
ization–depoissonization operation. In Section 4 the analysis of cousins is carried out at a high
level, relegating the details to Appendix A. Subsection 4.1 is dedicated to the very transparent
uniform alphabets, where one can specify lower-order terms more explicitly, and Subsection 4.2
is for the nonuniform case. In Appendix A we study the location of the characteristic roots that
govern the average number of cousins.

3. Methodology

Two main tools in the forthcoming analysis are the Mellin transform and poissonization–
depoissonization. These methods are by now standard, so we will not present lengthy details,
but rather we refer the reader to standard sources on such material.

The Mellin transform of a function f (x) is

M[f (x), s] :=
∫ ∞

0
f (x)xs−1 ds,

which will also be denoted by f ∗(s). The Mellin transform usually exists in vertical strips, in
the complex s-plane, of the form

a < Re(s) < b

for real numbers a < b. We will denote this strip by 〈a, b〉. If f (x) = O(xα) as x → 0
and f (x) = O(xβ) as x → ∞, the Mellin transform of f (x) is defined for all s in the strip
〈−α, −β〉; this is referred to as the fundamental strip.
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The function f (x) can be recovered from its transform by a line integral

f (x) = 1

2π i

∫ c+i∞

c−i∞
f ∗(s)x−s ds for any c ∈ (a, b).

Usually, such an integral is computed asymptotically (as x → ∞) by shifting the line of
integration an arbitrary distance to the right of the existence strip and compensating for the shift
by the residues of the poles between the two lines of integration. There is often a small residual
error of the form O(x−θ ) for an arbitrarily large positive number θ . For a survey of the uses of
the Mellin transform in the analysis of algorithms, see [10].

The expression for the average number of cousins among n strings is complicated for direct
analysis; however, a poissonized version is amenable to asymptotic analysis via the Mellin
transform. In this context, poissonization means considering an analogous problem, but with a
Poisson random number of strings, instead of fixedn. The number of keys is taken to be a Poisson
random variable with parameter z. The required asymptotic results for the fixed population are
then extracted from the poissonized model by depoissonization, which usually means using the
same results for the poissonized model, after replacing z with n. This operation is justified by
checking some regularity conditions, but it also introduces an asymptotically negligible error.
We consider this as a standard program, and will not give details, but rather refer the reader to
the original work [13] or its presentation in textbook style [18, Chapter 10].

4. Cousins in tries

Each set of k-cousins corresponds to a unique subtree consisting of k strings that have a
unique longest string w ∈ A∗ appearing at the start of all k strings in the subtree. Conversely,
each w ∈ A∗ uniquely denotes such a subtree if the following m+1 conditions are satisfied.

Condition 0: Exactly k of the n keys inserted in the trie have w as a prefix.

Condition j : For 1 ≤ j ≤ m, fewer than k of the n keys inserted in the trie have waj as a
prefix.

In other words, w is the unique longest common prefix for exactly k strings, and the splitting
of the k strings occurs exactly at w (as opposed to further down the tree). So, w ∈ A∗ is the
unique longest common prefix of exactly k strings with probability

(
n

k

)(
1 −

m∑
j=1

pk
j

)
P(w)k(1 − P(w))n−k. (1)

The binomial coefficient accounts for the number of ways to choose which of the n keys will
be in the k-cousin, and the factor (1 − ∑m

j=1 pk
j ) is inserted to exclude the case of a string that

is a common prefix of k keys, but not the longest possible for them. Let 1E be the indicator of
the event E , that is, the Bernoulli random variable that assumes the value 1 when E occurs and
the value 0 otherwise. Let En,k(w) be the event that the word w is the unique longest common
prefix of exactly k of the n strings; this event occurs with the probability in (1).

The count Xn,k has a representation as a sum of indicators,

Xn,k =
∑

w∈A∗
1Ek,n(w),
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with average

E[Xn,k] =
∑

w∈A∗
E[1Ek(w)] =

∑
w∈A∗

(
n

k

)(
1 −

m∑
j=1

pk
j

)
P(w)k(1 − P(w))n−k.

This yields the exponential generating function

Fk(z) :=
∑
n≥0

E[Xn,k]z
n

n! =
∑

w∈A∗

1

k!
(

1 −
m∑

j=1

pk
j

)
P(w)kzkez(1−P(w)).

For simplicity, in the remainder of this paper we use the notation

ρ := 1

k!
(

1 −
m∑

j=1

pk
j

)
.

Note that F̃k := e−zFk(z) has the following poissonization interpretation:

F̃k(z) =
∑
n≥0

E[Xn,k]z
n

n! e−z

=
∑
n≥0

E[Xn,k] P(Nz = n)

=
∑
n≥0

E[XNz,k | Nz = n] P(Nz = n)

= E[XNz,k],
where Nz is a random variable with a Poisson distribution with mean z.

The poissonized version is just like the original fixed population problem, only the fixed
value n is replaced by a random variable Nz; the associated generating function is

F̃k(z) =
∑
n≥0

E[Xn,k]z
n

n! e−z =
∑

w∈A∗
ρ P(w)kzke−z P(w).

As z → 0, we have F̃k(z) = O(zk); this is straightforward, since e−z P(w) = 1 + O(z P(w)).
For each (fixed) ε with 0 < ε < 1, as z → ∞, we have F̃k(z) = O(z1+ε); to see this, we first
observe that

zk−1−εe−z P(w) ≤
(

k − 1 − ε

P(w)

)k−1−ε

e−(k−1−ε) for all z ≥ 0

(note that, for each constant c > 0, the function zk−1−εe−cz has a maximum value over all
z ≥ 0; the maximum occurs exactly at z = (k − 1 − ε)/c). Thus,

F̃k(z) = O(z1+ε)
∑

w∈A∗
P(w)k

(
k − 1 − ε

P(w)

)k−1−ε

e−(k−1−ε)

= O(z1+ε)
∑

w∈A∗
P(w)1+ε

= O(z1+ε).
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Of course, we emphasize that the constants hidden in the O(·) terms in the lines above depend
on (the fixed values of) k and ε.

So, the fundamental strip of the Mellin transform of F̃k(z) is 〈−k, −1〉. (The real parts in
the fundamental strip fall in the open interval (−k, −1).)

Using the well-known properties of the Mellin transform (see, e.g. [9], [10], and [18,
Chapter 10]), we compute

F̃ ∗
k (s) =

∑
w∈A∗

ρ P(w)kM[zke−z P(w), s]

=
∑

w∈A∗
ρ P(w)kM[e−z P(w), s + k]

=
∑

w∈A∗
ρ P(w)k P(w)−(s+k)M[e−z, s + k]

= ρ	(s + k)
∑

w∈A∗
P(w)−s .

Finally, if we use b1, . . . , bm to denote the number of occurrences of a1, . . . , am, respectively,
found in w, it follows that

∑
w∈A∗

P(w)−s =
∑

b1,...,bm

(
b1 + · · · + bm

b1, . . . , bm

)
(p

b1
1 · · · pbm

m )−s

=
∑

b1,...,bm

(
b1 + · · · + bm

b1, . . . , bm

)
(p−s

1 )b1 · · · (p−s
m )bm

= 1

1 − ∑m
�=1 p−s

�

.

So the Mellin transform of F̃k(z) is

F̃ ∗
k (s) = ρ	(s + k)

1

1 − ∑m
�=1 p−s

�

.

It is well known that the poles of the Mellin transform play an important role in determining
the character of the transformed function, and the equation

1 −
m∑

j=1

p−s
j = 0

will be a deciding element for the inverse Mellin transform. We will call this relation the
characteristic equation, and we refer to its roots as the characteristic roots. It is clear that
−1 is a root. This root provides dominant asymptotic terms, and we will call it the dominant
pole. The characteristic equation has many other poles. We study the location of the poles in
Appendix A.

4.1. Uniform alphabets

The case of a uniform alphabet, where all the symbols are equally likely, has a transparent
structure for the inverse Mellin transform. In this case pj = 1/m for all j = 1, . . . , m, and the
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Mellin transform simplifies to

F̃ ∗
k (s) = 1

k! (1 − m−k+1)	(s + k)
1

1 − ms+1 .

This Mellin transform has simple poles at the roots of the characteristic equation

ms+1 = 1 = e2π ij

for any integer j , that is, the roots are

sj = −1 + 2π ij

ln m
, j = . . . , −2, −1, 0, 1, 2, . . . ;

the pole s0 = −1 is the dominant pole, as we will see. We can invert the Mellin transform using
Cauchy’s residue theorem. We integrate counterclockwise over a large rectangle with corners
− 3

2 ± iλ and θ ± iλ for large λ and θ (the numbers λ and θ are chosen so that the sides do not
cross any poles). As λ grows arbitrarily large, the integrals on the top and bottom sides of the
integration box vanish (owing to the rapid decrease in the magnitude of the gamma function),
and what is left is the integration on the vertical lines at Re(s) = − 3

2 (which is the negative of
the desired inverse transform) and an error of magnitude O(z−θ ) as z → ∞, corresponding to
the integration on the vertical line Re(s) = θ . But, when λ → ∞ and θ = 0, the integration
box grows to encompass all the poles to the right of the vertical line Re(s) = − 3

2 . And so,

F̃k(z) = 1

2π i

∫ −3/2+i∞

−3/2−i∞
F̃ ∗

k (s)z−s ds =
∑
j∈Z

− Res[F̃ ∗
k (s)z−s; s = zj ] + O(1).

If we define

Qk(z) = 1 − m−k+1

k! ln m

∑
j∈Z\{0}

	

(
k − 1 + 2π ij

ln m

)
exp(−2π ij logm z),

we have the poissonized representation

E[XNz,k] = F̃k(z) = 1 − m−k+1

k(k − 1) ln m
z + zQk(z) + O(1).

Standard depoissonization gives a similar result, with n replacing z, but a small O(1) depois-
sonization error appears. For the uniform case, we obtain the following version of Theorem 1,
with slightly refined error terms:

E[Xn,k] = 1 − m−k+1

k(k − 1) ln m
n + nQk(n) + O(1).

Remarks. (i) The error is not reduced even if we take θ much larger, and thus obtain a
smaller inversion error of order O(z−θ ). There will ultimately still be a residual O(1) error
from depoissonization. For example, if we take θ = 5, the inversion error is O(z−5), and
when depoissonized it is reflected into an O(n−5) error, which the O(1) depoissonization error
subsumes.
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Table 1: Uniform bounds on the oscillations for m = 4 and some small values of k.

k A uniform bound on |Qk(z)|
2 0.002 339 1
3 0.004 528 5
4 0.005 900 5
5 0.006 511 3
6 0.006 610 5
7 0.006 418 9
8 0.006 084 3
9 0.005 694 0

(ii) The function Qk is an oscillating function that is absolutely bounded uniformly in z. In
Table 1 we present an absolute uniform bound on the oscillations for m = 4 and a few small
values of k. It is quite remarkable that the oscillations here are relatively large. For instance,
with m = 4, k = 8, Q8(200) ≈ −0.005 300 145 28, and |Q8(z)| < 0.006 084 3 for all z, while
(1 − m−k+1)/k(k − 1) ln m ≈ 0.012 880 419 52.

(iii) In numerous problems on tries, the oscillations are of a much smaller order of magnitude;
see, e.g. [1], [2], [5], and [6], where oscillations of the typical order 10−5, and sometimes as
small as 10−14, are reported.

(iv) For depoissonization, versions of [4] and [18, Chapter 10] can be helpful to our purposes.

4.2. Nonuniform alphabets

The presentation for nonuniform alphabets involves some technicalities. The presentation
of the lower-order terms will not always be as refined (as compared to the uniform alphabet
scenario above).

We still go through the Mellin transform inversion. The main contribution comes from
s = z0 = −1, which is

−Res[F̃ ∗
k (s)z−s; s = z0 = −1] = ρ	(k − 1)

z

h
= 1 − ∑m

j=1 pk
j

k(k − 1)h
z,

where h = h(p1, . . . , pm) = −∑m
j=1 pj ln pj is the data entropy.

As for the rest of the poles, all combined they contribute only o(z) if none lie on the vertical
line Re(s) = −1, which is a corollary of the Wiener–Ikehara theorem [15] (all that is required
in this case is that the Mellin transform, with the singularity at −1 removed, can be analytically
continued to a domain to the right of the line Re(s) = −1, which is the case). If some poles
fall on the line Re(s) = −1, they introduce small oscillations at the linear level, and the rest
contribute only o(z). As shown inAppendixA, there is a number �m ≥ −1, at which—or to the
left of which—all the poles lie. In carrying out the inversion by shifting the line of integration,
we take that line to the right of �m, and that will account for all the poles. Upon completing
the residue calculation and performing depoissonization, we prove Theorem 1.

Remark. Some of the poles may lie on the vertical line Re(s) = −1, such as, for example, the
uniform case for any m or the case in which m = 3, p1 = 1

2 , p2 = 1
4 , and p3 = 1

4 . In the latter
case we have two sets of poles: a group lined up at Re(s) = −1 and another at Re(s) = 0.
For every integer j , the complex number −1 + 4jπ i/ ln 4 is a pole lined up vertically with the
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dominant pole, and the complex number (4j + 2)π i/ ln 4 is a pole lined up vertically with the
imaginary axis. In this example we can find an explicit representation:

E[Xn,k] =
(

1 − 4−k+1

k(k − 1) ln 4
+ 1 − 4−k+1

k! ln 4

∑
j∈Z\{0}

	

(
k − 1 + 4π ij

ln 4

)
exp(−4π ij log4 z)

)
z

+ O(1).

The O(1) term itself contains the oscillations

1 − 4−k+1

k! ln 4

∑
j∈Z\{0}

	

(
k − 1 + (4j + 2)π i

ln 4

)
exp(−(4j + 2)π ij log4 z).

Appendix A Location of the poles

We will study the location of the roots of the characteristic equation in this appendix via
a number of small technical lemmas. We first give an overview of the plan of the proof.
In the following lemmas we will use the definition of the minimum symbol probability: let
p := min1≤j≤m pj ; there may be several symbols of the same minimal probability p = p1 =
p2 = · · · = pν, ν ≥ 1 (recall that the probabilities are arranged in increasing order). For
positive constants K and a, we will call a function like Keax an exponential function with
index a.

If we cut up the complex s-plane into horizontal slices each of height 2π i/|ln p|, every slice
will contain exactly one characteristic root. Each root’s real part falls between −1 and a fixed
positive real number �m. Thus, all the characteristic roots fall in the vertical strip

−1 ≤ Re(s) ≤ �m.

We prove this general picture in the next few lemmas. The proof follows and generalizes some
of the lines in [7]. Origins of this argument can be found in [17] (see also [16]). There are no
direct references to the versions we need for our proof, and we thought that drawing the full
picture would be helpful for the exposition.

Lemma 1. ([17].) Let s be a characteristic root. Then

−1 ≤ Re(s).

Proof. Suppose, toward a contradiction, that there is a root s that lies to the left of the
dominant pole s0 = −1 (i.e. Re(s) < −1). For such a root,

∣∣∣∣
m∑

j=1

p−s
j

∣∣∣∣ ≤
m∑

j=1

|p−s
j | = p

−Re(s)
1 + · · · + p−Re(s)

m < p1 + · · · + pm = 1;

thus, s cannot be a root of the characteristic equation, which is a contradiction.

Lemma 2. Let s be a characteristic root. There exists a real number �m (which depends only
on m and the symbol probabilities) such that

Re(s) ≤ �m.
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Proof. Let us exclude the case in which ν = m (the uniform alphabet), since �m is clearly −1
in this case. So, we take ν < m. Compare the two functions f (x) = 1+p−x

ν+1+p−x
ν+2+· · ·+p−x

m

and g(x) = νp−x for real x. The function g(x) is an exponential function with index |lnp|
and f (x) is 1 plus a linear combination of exponential functions with indices that are all less
than that in g(x), as p is the minimal symbol probability. The function f (x) rises from 1 at
−∞ to ∞ at +∞, and the function g(x) rises from 0 at −∞ to ∞ at +∞. According to the
indices (which govern rates of increase), the two functions intersect at a point x = �m. The
curve of f (x) stays above that of g(x) until �m, where the two functions become equal, then
f (x) passes below g(x) for x > �m.

Now, if s is a root of the characteristic equation, it satisfies

p−s
1 + p−s

2 + · · · + p−s
m = 1

and

g(Re(s)) = νp−Re(s)

= ν|p−s |
= |1 − (p−s

ν+1 + · · · + p−s
m )|

≤ 1 + p
−Re(s)
ν+1 + · · · + p− Re(s)

m

= f (Re(s)).

So, the real part of s must be at most �m.

We know that there are poles with real part −1, such as s0 (and possibly many others); we
see that

−1 ≤ Re(s) ≤ �m,

and the number �m must be at least −1. By further partitioning the vertical strip −1 ≤
Re(s) ≤ �m into ‘cells’ of height 2π i/|ln p| each, next we will demonstrate that each cell
contains exactly one characteristic root. It is sufficient for our purpose to consider the strip

−2 ≤ Re(s) ≤ �m + 1.

We define the cells Bj to be

Bj =
{
s : −2 ≤ Re(s) ≤ �m + 1,

(2j − 1)π

|ln p| ≤ Im(s) ≤ (2j + 1)π

|ln p|
}

for j ∈ Z.

To prove that each cell contains exactly one root, we resort to Rouché’s theorem [12, p. 280],
a good aid in locating the 0s of an entire function. We state that theorem for the reader’s
convenience.

Theorem 2. (Rouché’s theorem [12, p. 280].) Let the complex-valued functions f (z) and g(z)

be holomorphic inside and on some closed contour C, with |g(z)| < |f (z)| on C. Then f (z)

and f (z) + g(z) have the same number of 0s inside C (each 0 is counted according to its
multiplicity).

The general idea in the application of Rouché’s theorem is to replace a complicated function
with a dominating simpler one, with easy to calculate roots, and state something about the
number of 0s in a certain closed domain.
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Lemma 3. For each integer j , the cell Bj contains exactly one characteristic root.

Proof. We apply Rouché’s theorem with the two functions f (s) = νp−s − 1 and g(s) =
p−s

ν+1 + · · · + p−s
m . Both are entire (hence holomorphic, as required). The function f (s) has

the roots (ln ν + 2π ij)/ ln p for integer j . Within the cell Bj , there is only one of these (at the
middle of the vertical line segment defined by the intersection of the line Re(s) = ln ν/ ln p

and the cell). It is then sufficient to show that |g(s)| < |f (s)| on the boundary of Bj , as it will
then follow that f (s) + g(s) = p−s

1 + p−s
2 + · · · + p−s

m − 1 has exactly one root in Bj . We
take up the following four sides.

• The right side. On this side Re(s) = �m + 1 and

|g(s)| = |p−s
ν+1 + · · · + p−s

m |
≤ |p−s

ν+1| + · · · + |p−s
m |

≤ p
−�m−1
ν+1 + · · · + p−�m−1

m

< νp−�m−1 − 1

≤ |f (s)|.

• The left side. On this side Re(s) = −2. We have (p1 + · · · + pm)2 = 1, i.e. p2
1 + · · · +

p2
m + 2

∑
1≤j, �≤m pjp� = 1, and p2

1 + · · · + p2
m < 1. It follows that

|g(s)| ≤ |p−s
ν+1| + · · · + |p−s

m | ≤ p2
ν+1 + · · · + p2

m < 1 − νp2.

We also have
νp2 ≤ ν

m2 ≤ m

m2 < 1,

and, therefore,
|g(s)| < |1 − νp−s | ≤ |f (s)|.

• The top side. On this side Im(s) = (2j + 1)π/|ln p|. So, f (s) = νp−s − 1 =
−νp−Re(s) − 1 and |f (s)| = 1 + νp−Re(s), and

|g(s)| ≤ |p−s
ν+1| + · · · + |p−s

m | ≤ p
−Re(s)
ν+1 + · · · + p−Re(s)

m < 1 + νp−Re(s) = |f (s)|.
The strict equality is according to the exponentiality index, as p is minimal.

• The bottom side. On this side Im(s) = (2j − 1)π/|ln p|, and the argument is similar to
that on the top side.

The proof is complete.

Acknowledgement

The authors are indebted to Michael Drmota for several conversations and advice.

References

[1] Aguech, R., Lasmar, N. and Mahmoud, H. (2006). Distances in random digital search trees. Acta Informatica
43, 243–264.

[2] Aguech, R., Lasmar, N. and Mahmoud, H. (2006). Limit distribution of distances in biased random tries.
J. App. Prob. 43, 1–14.



900 H. M. MAHMOUD AND M. D. WARD

[3] Briandais, R. D. L. (1959). File searching using variable length keys. In Proc. Western Joint Comput. Conf.,
AFIPS, San Francisco, CA, pp. 295–298.

[4] Bruss, F. T., Louchard, G. and Ward, M. D. (2008). Injecting unique minima into random sets. To appear in
ACM Trans. Algorithms.

[5] Christophi, C. and Mahmoud, H. (2005). The oscillatory distribution of distances in random tries. Ann. Appl.
Prob. 15, 1536–1564.

[6] Christophi, C. and Mahmoud, H. (2008). On climbing tries. Prob. Eng. Inf. Sci. 22, 133–149.
[7] Drmota, M., Reznik, Y., Savari, S. and Szpankowski, W. (2008). Analysis of variable-to-fixed length codes.

Submitted.
[8] Fagin, R., Nievergelt, J., Pippenger, N. and Strong, H. (1979). Extendible hashing—a fast access method

for dynamic files. ACM Trans. Database Systems 4, 315–344.
[9] Flajolet, P. and Sedgewick, R. (1995). Mellin transforms and asymptotics: finite differences and Rice’s

integrals. Theoret. Comput. Sci. 144, 101–124.
[10] Flajolet, P., Gourdon, X. and Dumas, P. (1995). Mellin transforms and asymptotics: harmonic sums. Theoret.

Comput. Sci. 144, 3–58.
[11] Fredkin, E. (1960). Trie memory. Commun. ACM 3, 490–499.
[12] Henrici, P. (1986). Applied and Computational Complex Analysis. John Wiley, New York.
[13] Jacquet, P. and Szpankowski, W. (1998). Analytical depoissonization and its applications. Theoret. Comput.

Sci. 201, 1–62.
[14] Knuth, D. E. (1998). The Art of Computer Programming, Vol. 3, 2nd edn. Addison-Wesley, Reading, MA.
[15] Korevaar, J. (2002). A century of complex Tauberian theory. Bull. Amer. Math. Soc. (N. S.) 39, 475–531.
[16] Schachinger, W. (1992). Beitrage zur analyse von datenstrkturen zur digitalen suche. Doctoral Thesis,

Technical University of Vienna.
[17] Schachinger, W. (2000). Limiting distributions for the costs of partial match retrievals in multidimensional

tries. Random Structures Algorithms 17, 428–459.
[18] Szpankowski, W. (2001). Average Case Analysis of Algorithms on Sequences. John Wiley, New York.


	1 Introduction
	2 Scope
	3 Methodology
	4 Cousins in tries
	4.1 Uniform alphabets
	4.2 Nonuniform alphabets

	A Location of the poles
	Acknowledgement
	References

