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We consider words with letters from a q-ary alphabet A. The kth subword complexity of a word w ∈ A∗ is the number of distinct
subwords of length k that appear as contiguous subwords of w. We analyze subword complexity from both combinatorial and
probabilistic viewpoints. Our first main result is a precise analysis of the expected kth subword complexity of a randomly-chosen
word w ∈ An. Our other main result describes, for w ∈ A∗, the degree to which one understands the set of all subwords of w,
provided that one knows only the set of all subwords of some particular length k.

Our methods rely upon a precise characterization of overlaps between words of length k. We use three kinds of correlation
polynomials of words of length k: unweighted correlation polynomials; correlation polynomials associated to a Bernoulli source;
and generalized multivariate correlation polynomials. We survey previously-known results about such polynomials, and we also
present some new results concerning correlation polynomials.
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1 Introduction.
For a fixed integer q > 1, we consider the q-ary alphabet A = {a1, . . . , aq}. The set of all words of length n on A is
denoted byAn. The set of all finite words onA is denoted byA∗. We use ε to denote the (empty) word of length zero.
A subword of a finite or infinite word w over A is a finite block of consecutive letters of w. By Ln(w) we denote the
set of all the subwords of length n of w. The language of w is the set of all the subwords of w. Throughout this paper
we denote the ith character of a word w by wi. The concatenation of two words u and v is denoted by uv.

The subword complexity of w is the function fw : Z>0 → Z≥0 that assigns to each positive integer n the cardinality
of Ln(w). We say that fw(n) is the nth subword complexity of w. Clearly, fw(n) = 0 if and only if w has length
|w| < n. In the literature, subword complexity is sometimes referred to as symbolic or block complexity.

Intuitively, the subword complexity measures the degree of randomness of a word. For example, an infinite word w
has a bounded subword complexity if and only if w is ultimately periodic. At the same time the expansion of a normal
number has an exponential subword complexity function. We can also think of subword complexity as a characteristic
of the “size” of the language of a word.

The subword complexity fw of an infinite word w is a non-decreasing function with the property that, if fw(n) =
fw(n + 1) for some n ∈ Z>0, then fw(i) = fw(n) for all i ≥ n. A list of other known properties of subword
complexity of infinite words is given in (Fer99). Results on the subword complexity of finite words can be found in
(dL99) and (JLS04). In particular, it was proved in (dL99) that the subword complexity of a finite word w is unimodal.
Moreover, if fw(n) < fw(n+ 1) for some n ∈ Z>0, then fw(i) = fw(i+ 1)− 1 for n ≤ i < |w|.

In this paper we study the subword containment and subword complexity of finite words only. Whenever we
randomly select a word, we assume that the letters are selected from A independently of each other and are each
generated by a stationary Bernoulli source. In other words, there is a set of probabilities {p1, . . . , pq} such that letter
ai ∈ A has probability pi of being selected. We write

P(w) =
q∏
i=1

pbi
i
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if w has bi occurrences of letter ai (for each i).
We concentrate on the kth subword complexity for a fixed k from several points of view. One of our goals is to

characterize the random variable that represents the kth subword complexity of a randomly selected word w ∈ An; in
Theorem 2.1, we obtain the expected value of the kth complexity of a word of length n. A special case of this result,
using uniform probabilities (i.e., p1 = p2 = · · · = pq), was obtained in (JLS04) using a different method.

Another interesting problem we consider is, for w ∈ A∗, the extent to which we can draw conclusions about all
the sets Lm(w), provided that we only know the set Ln(w) for some n. More precisely, let S be a set of “banned”
subwords of length n, and let m be an integer, 1 ≤ m ≤ n. We consider all the words w ∈ A∗ with the property
that Ln(w) ∩ S = ∅. In Theorem 2.4 we obtain the multivariate generating function that gives all the possible sets
Lm(w) and the frequency of each subword of length m in each such w. In the case m = 1 this problem was solved in
(GO81b), (GJ79) and (NZ99).

To answer the questions posed above, we use combinatorics on words to precise characterize overlaps between
words of length k. We use three kinds of correlation polynomials of words of length k: unweighted correlation poly-
nomials (similar to the ones used by Guibas and Odlyzko in (GO78), (GO81a) and (GO81b)); correlation polynomials
associated to a Bernoulli source (as defined by Régnier and Szpankowski in (RS98), (JS05) and (RD04)); and general-
ized multivariate correlation polynomials. A comparison of the methods used by Goulden-Jackson, Guibas-Odlyzko,
Noonan-Zeilberger, and Régnier-Szpankowski can be found in (Kon05).

Nicodème et al. (PN02) consider automata and translation to generating functions by the Chomsky-Schützenberger
algorithm. In particular, they analyze the statistics of the number of occurrences of a regular (contiguous) expression
pattern in a regular text; an extension of the method is found in (Nic03). Both Park et al. (PHNS06) and Ward (War07)
concern profiles of suffix-trees, which are intimately related to the number of repeated subwords. The studies (BK93),
(Fay04), (JS94), (JS05), and (RR03) and are devoted to asymptotic analysis of related pattern matching problems.

In molecular biology the subword complexity of finite words is used to study DNA sequences, in particular the
structure of certain genes. See, for example, (AC00) and (TAK+02). Applications concerning subword complexity
also include dynamical systems, ergodic theory, number theory and theoretical computer science. For surveys see, for
instance, (All94) and (Fer99).

The definitions in Section 1.1 are necessary for the understanding of Theorem 2.1. The definitions in Sections 1.2
and 1.3 are necessary for understanding both Theorem 2.4 and the auxiliary results about correlation matrices in
Section 5.

1.1 Univariate Correlation Polynomials
We define the correlation set of two words w and u, each of length k, as

Sw,u = {ui+1 . . . uk | wk−i+1 . . . wk = u1 . . . ui; 1 ≤ i ≤ k}

(see (JS05) and (RD04)). The set of positions i used in defining the correlation set is defined as P(w, u), i.e.,

P(w, u) = {i | wk−i+1 . . . wk = u1 . . . ui; 1 ≤ i ≤ k} .

We note that v occurs as both a suffix of w (say, w = xv) and a prefix of u (say, u = vy) if and only if y ∈ Sw,u and
|v| ∈ P(w, u). In other words, y ∈ Sw,u if and only if wy has u as a suffix, i.e., appending y to the end of w yields u
as an overlapping suffix. The autocorrelation set of w, defined by

P(w) = {i | wk−i+1 . . . wk = w1 . . . wi; 1 ≤ i ≤ k} ,

characterizes the overlaps of w with itself.
We define the unweighted correlation polynomial Cw,u(z) as the generating function of Sw,u with unweighted

coefficients, namely
Cw,u(z) =

∑
i∈P(w,u)

zk−i .

In order to enumerate the overlaps of w with itself, we define the unweighted autocorrelation polynomial of w as
Cw(z) := Cw,w(z).

In the case of a stationary Bernoulli source, when the letters are selected from A independently of each other, we
introduce the weighted correlation polynomial Sw,u(z) as the generating function of Sw,u with weighted coefficients,
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namely
Sw,u(z) =

∑
i∈P(w,u)

P(ui+1 . . . uk)zk−i .

As a special case of Sw,u(z), we define the weighted autocorrelation polynomial of w as

Sw(z) := Sw,w(z) . (1)

In the example below we demonstrate the definitions presented so far. To determine the set Sw,u, for each i,
1 ≤ i ≤ k, we place u under w such that the first character of u is under the ith character of w. If the characters of w
and u in the overlapping segment are the same, then the suffix y of u that follows the overlap is in Sw,u.

Example 1.1 Consider an alphabet of size q = 3, denoted as A = {a1, a2, a3} = {1, 2, 3}. Consider the words
w = 313212 and u = 212133. The following matrix shows the contributions to Cw,u(z) and Sw,u(z) from various
overlaps of w and u.

w : 3 1 3 2 1 2 unweighted weighted
u : 2 1 2 1 3 2 0 0

2 1 2 1 3 2 0 0
2 1 2 1 3 2 0 0

2 1 2 1 3 2 z3 P(132)z3

2 1 2 1 3 2 0 0
2 1 2 1 3 2 z5 P(12132)z5

Thus Sw,u = {132, 12132}. Also, P(w, u) = {1, 3}, since w has suffixes of lengths 1 and 3 in common with prefixes
of u. We note that Cw,u(z) = z3 + z5 and Sw,u(z) = P(132)z3 + P(12132)z5.

Observation 1.2 In the case where all words fromA are equiprobable (i.e., P(ai) = 1/q for each i), the weighted cor-
relation polynomial Sw,u(z) =

∑
i∈P(w,u) P(ui+1 . . . uk)zk−i and unweighted correlation polynomial Cw,u(z) =∑

i∈P(w,u) z
k−i are related by

Cw,u(z) = Sw,u(z/q) .

It is an interesting fact that the set of unweighted autocorrelation polynomials of words of length k over A =
{a1, . . . , aq} does not depend on q (as long as q ≥ 2) and is of order klog k (see (GO81a) and (HHI00)). The
unweighted correlation polynomial Cw(z) has a probabilistic meaning. Consider the experiment which consists of
repeated throws of a fair q-sided die with faces a1, a2, . . . , aq . Then the expected waiting time until w appears is
q|w|pw(1/q). This result was first proved in (Sol66).

Unweighted correlation polynomials are also used for counting the number of words of any given length that
do not contain subwords from a given set of “forbidden” subwords. Consider a “forbidden” set of i words S =
{u1, . . . , ui} ⊆ Ak. Without loss of generality, assume that the uj are in increasing lexicographic order. We define
CS(z) as the matrix whose entries are the unweighted correlation polynomials associated with the words in the set S.
In other words,

CS(z) =

Cu1,u1(z) Cu1,u2(z) · · · Cu1,ui
(z)

...
...

. . .
...

Cui,u1(z) Cui,u2(z) · · · Cui,ui
(z)

 . (2)

The following proposition is a direct consequence of Theorem 1 in (GO81b).

Proposition 1.3 Let S = {u1, . . . , ui} ⊆ Ak. By cS(n) we denote the number of words of length n over A that do
not contain any subwords from the set S. Let FS(z) be the generating function of cS(n), namely

FS(z) =
∞∑
n=0

cS(n)zn .

Then
FS(z) = 1/[1− zq + zitrace(CS(z)−1E)] ,

where CS(z) is the matrix defined above and E is the i× i matrix whose entries are all 1.
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Proposition 1.3 is of peculiar interest to us. For fixed positive integers k and l, we can use the result of Propo-
sition 1.3 in combination with the method of inclusion-exclusion to obtain a generating function for the number of
words of length n whose k complexity equals l. However, this generating function will have 2q

k

terms and will be
computationally ineffective.

1.2 Multivariate Correlation Polynomials
Throughout the following discussion, we consider an integer m > 0 that remains fixed.

We temporarily let v0, . . . , vqm−1 denote the qm words of Am, listed in increasing lexicographic order. Then the
type τm(w) of a word w ∈ A∗ is the monomial zk00 zk11 . . . z

kqm−1
qm−1 , where ki is the number of occurrences of vi as a

subword in w. In other words, the type τm(w) gives the number of occurrences of each subword of length m in w.

Example 1.4 For example, consider the case q = 2 and A = {a1, a2} = {0, 1}. The binary word w = 001111 has
type τ3(001111) = z1z3z

2
7 , because w has the subwords v1 = 001 occurring once, v3 = 011 occurring once, and

v7 = 111 occurring twice.

We note that, if |w| < m, then τm(w) = 1, because w is too short to have any subwords of length m. The type τm(w)
of a word w is a modification of the notion of type introduced by Goulden and Jackson in (GJ79).

Now we generalize the concept of the unweighted correlation polynomial Cw,u(z), for w, u ∈ Ak, where k ≥
2m − 2. Let z = (z0, z1, . . . , zqm−1). The mth multivariate unweighted correlation polynomial of w, u ∈ Ak is
defined as

C(m)
w,u (z) =

∑
y∈Sw,u

τm(y′) ,

where y′ is defined as follows: We write r = r1 . . . r2k−i = xvy, where |v| = i, and w = xv, and u = vy. Then
y′ = rk−2m+3 . . . r2k−i−(m−1). In other words we remove the last m − 1 characters of r, and then y′ is formed by
taking a suffix of length |y|+ (m− 1) of what remains.

In order to enumerate the overlaps of w with itself, we define the mth multivariate unweighted autocorrelation
polynomial of w as C(m)

w (z) := C
(m)
w,w(z).

Example 1.5 Consider the alphabet A = {a1, a2} = {0, 1} and the words w = 100101 and u = 101011. Then

C(1)
v,w(z0, z1) = τ1(011) + τ1(01011) = z0z

2
1 + z2

0z
3
1 ,

C(2)
v,w(z0, z1, z2, z3) = τ2(0101) + τ2(010101) = z2

1z2 + z3
1z

2
2 ,

C(3)
v,w(z0, z1, . . . , z7) = τ3(01010) + τ3(0101010) = z2

2z5 + z3
2z

2
5 .

In the following table we compare the contributions to Sw,u(z), C(1)
w,u(z), and C(2)

w,u(z), from various overlaps of w
and u.

w : 1 0 0 1 0 1 Sw,u(z) C
(1)
w,u(z) C

(2)
w,u(z)

u : 1 0 1 0 1 1 0 0 0
1 0 1 0 1 1 0 0 0

1 0 1 0 1 1 0 0 0
1 0 1 0 1 1 P(011)z3 z0z

2
1 z2

1z2
1 0 1 0 1 1 0 0 0

1 0 1 0 1 1 P(01011)z5 z2
0z

3
1 z3

1z
2
2

The multivariate correlation polynomials generalize the correlation polynomials introduced earlier in this paper,
as well as other types of correlation polynomials used in literature. If we substitute z = (z, z, . . . , z) in the mul-
tivariate correlation polynomial C(1)

v,w(z), we get the unweighted correlation polynomial Cw,u(z). If we substitute
z = (zp1, zp2, . . . , zpq) inC(1)

v,w(z), where pi is the probability of the letter ai ∈ A in the case of a stationary Bernoulli
source, we get the weighted correlation polynomial Cw,u(z). Also, the autocorrelation polynomial for the Markovian
model of orderm in (RS98) is the specialization ofC(m+1)

v (z) when z = (zP(v0), zP(v1), . . . , zP(vqm+1−1)), where
{v0, . . . , vqm+1−1} are the words of length m+ 1 over A arranged in increasing lexicographic order.

The reversal of a word w = w1w2 . . . wn is the word wnwn−1...w1, denoted by w̃. The connector matrix for the
cluster method, introduced by Goulden and Jackson in (GJ79) and used by Noonan and Zeilberger in (NZ99), has
entries ew,v , where ew,w = C

(1)
w,w(z)− 1 and ew,v = C

(1)ev, ew(z) when w 6= u.
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Similar to the probabilistic meaning of Cw(z) discussed earlier, the polynomial C(1)
w (z) also has a probabilistic

meaning. Consider the experiment which consists of independent, repeated throws of a biased q-sided die with faces
a1, a2, . . . , aq . Let pi be the probability that letter ai comes up on one throw. We assume that, for each ai, the proba-
bility pi is nonzero; otherwise, we can safely eliminate ai from our alphabet. Let τ1(w)[1/pi] denote the specialization
of the monomial τ1(w) at z = (1/p1, 1/p2, . . . , 1/pq). It was proved in (Li80) that the expected waiting time until the
word w appears is τ1(w)[1/pi]C

(1)
w (p1, p2, . . . , pq).

1.3 The de Bruijn Graph.
The de Bruijn graph Bn(A) is the directed graph whose vertices are words from An and whose edges are words from
An+1, with the property that a directed edge of the form w1 . . . wn+1 points from the vertex w1 . . . wn to the vertex
w2 . . . wn+1.

1

000 001

010 011

100 101

110 111

0000

0001

0010
0011

0100

0101

0110

0111

1000

1001

1010

1011

1100
1101

1110

1111

Fig. 1: The de Bruijn graph B3(A2)

Observation 1.6 Since the de Bruijn graph Bn(A) is strongly connected and has the property d+(v) = d−(v) = q
for all vertices v of Bn(A), then Bn(A) is Eulerian. Also, for n ≥ 2, the graph Bn(A) is the line graph of Bn−1(A),
which implies that Bn(A) is Hamiltonian as well. This proves the existence of a word w of length qn +n− 1 with nth
subword complexity fn(w) = qn.

Let Mn denote the adjacency matrix of Bn(A), whose rows and columns are indexed by the words of An arranged
in increasing lexicographic order. The (i, j)th entry of Mn (for 0 ≤ i, j ≤ qn − 1) is “1” if

i = qn−1a+ b and j = qb+ c

for 0 ≤ a, c < q and 0 ≤ b < qn−1, and the entry is 0 otherwise. To see this, note that the first qn−1 rows of Mn are
just repeated over and over a total of q times, and each row has a form that is easily discernible. For instance, consider
the following example.

Example 1.7 Consider the case q = 2, so A = {a1, a2}. Then the adjacency matrix of the de Bruijn graph B3(A) is

M3 =



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1


.
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2 Main Results.
We use autocorrelation polynomials to compute the expected value of the kth subword complexity of a word w ∈ An
when the letters of w are selected fromA independently of each other and are each generated by a stationary Bernoulli
source. By {p1, . . . , pq} we denote set of probabilities such that letter ai ∈ A has probability pi of being selected. A
special case of the result below, using uniform probabilities (i.e., p1 = p2 = · · · = pq), was obtained in (JLS04) using
a different method.

To formalize this notation, we let Y = Y1Y2Y3 . . . denote a sequence of symbols drawn from A. We assume that
the Yi’s are chosen independently, with P{Yi = aj} = pj . We let Xn,k denote the number of distinct words from Ak
which each appear as a subword of Y1Y2 . . . Yn+k−1.

We also let Y (l) = Y
(l)
1 Y

(l)
2 Y

(l)
3 . . . denote, for each l, a sequence of symbols drawn from A. Again, we assume

that all of the Y (l)
i ’s are chosen independently, with P{Y (l)

i = aj} = pj . We let X̂n,k denote the number of distinct
words in the collection {Y (l)

1 Y
(l)
2 . . . Y

(l)
k | 1 ≤ l ≤ n}.

Without loss of generality, we assume that 0 < p1 ≤ p2 ≤ · · · ≤ pq < 1. We define p := pq for ease of notation.
We also define δ =

√
p. We choose c > 0 such that p−c1 δ < 1, and we choose ε with 0 < ε < c. Finally, we define

µ = p−c1 δ for ease of notation.
The following two theorems are true regardless of the relationship between n and k. Even if k is a function of n or,

on the other hand, k and n are treated independently of each other, the following two theorems hold. The ε and µ in
this theorem and its corollary do not depend on n or k.

Theorem 2.1 Recall that 0 < p1 ≤ · · · ≤ pq < 1, and also p := pq and δ =
√
p. Consider c > 0 so that

µ := p−c1 δ < 1, and ε with 0 < ε < c. The difference of the average subword complexity Xn,k compared to X̂n,k is
asymptotically negligible. The difference satisfies

E[Xn,k]− E[X̂n,k] = O(n−εµk) . (3)

The average subword complexity Xn,k is

E[Xn,k] = qk −
∑
w∈Ak

(1−P(w))n +O(n−εµk) . (4)

Corollary 2.2 Consider the case where p1 = p2 = · · · = pq = 1/q. Recall p := pq = 1/q and δ =
√
p = 1/

√
q.

Consider c > 0 so that µ := p−c1 δ < 1, and ε with 0 < ε < c. Then the average subword complexity Xn,k is

E[Xn,k] = qk − qk(1− (1/q)k)n +O(n−εµk) ,

where ε > 0 and µ < 1 are described above.

Note (see (12) below) that
E[X̂n,k] =

∑
w∈Ak

(1− (1−P(w))n) .

Equivalently,
E[X̂n,k] = qk −

∑
w∈Ak

(1−P(w))n .

So (3) implies (4) immediately. Plugging in p1 = p2 = · · · = pq = 1/q yields Corollary 2.2.
So we can simply focus our attention on proving (3); the proof of (3) begins in Section 4 below.
Next we would like to develop a tool to analyze the language of a given word w. We recall that Ln(w) denotes the

set of subwords of length n of w. We would like to be able to say as much as possible about the sets Lm(w) provided
that we know only the set Ln(w) for some n. One approach is to obtain a generating function that, for given n and m,
with 1 ≤ m ≤ n, and for a set S of “banned” words of length n, gives themth type τm(w) of any word w that contains
no subwords from the set S. This result would give us all possible sets Lm(w) and the frequencies of occurrence of
subwords of length m in w when Ln(w) ∩ S = ∅.

Fix integers m and n with 1 ≤ m ≤ n. All the qn × qn matrices used here have their rows and columns indexed by
the words from An arranged in increasing lexicographic order. Define D(m)

n (z) to be the qn × qn diagonal matrix

D(m)
n (z) = diag(z0, . . . , z0, z1, . . . , z1, . . . , zqm−1, . . . , zqm−1) ; (5)
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each zi occurs qn−m times (consecutively) along the diagonal. Also define

P̃ = (I−D(m)
n (xz)Mn)−1 , (6)

where I is the identity matrix and Mn is the adjacency matrix of the de Bruijn graph Bn(A).
For v, w ∈ An, we let p̃v,w denote the (v, w)th entry of P̃. By v0, . . . , vqn−1 we denote the qn words of An, listed

in increasing lexicographic order.
Let Kw denote the sum of entries in the wth column of P̃, that is

Kw =
qn−1∑
i=0

p̃vi,w . (7)

Let Rτw denote the weighted sum of entries in the wth row of P̃, as follows:

Rτw =
qn−1∑
i=0

τm(vi)p̃w,vi . (8)

Also let

G(m)
n (x, z) =

∑
w∈An

Rτw. (9)

Observation 2.3 The multivariate functions Rτw, Kwτm(w) and G(m)
n have combinatorial meanings. The coefficient

of xizk in the generating function Rτw is the number of words of length i with prefix w and m-type zk. Similarly, the
coefficient of xizk in Kwτm(w) is the number of words of length i with suffix w and m-type zk. Also, the coefficient
of xizk in G(m)

n is the number of words of length i ≥ n and m-type zk.

Theorem 2.4 Let S = {u1, u2, . . . , uk} ⊆ An, where the ui are arranged in increasing lexicographic order. Let m
be an integer, 1 ≤ m ≤ n. We will denote the monomial zk00 zk11 . . . z

kqm−1
qm−1 by zk, where z = (z0, z1, . . . , zqm−1) and

k = (k0, k1, . . . , kqm−1).
Define the multivariate generating function

FS(x, z) =
∑
i≥n, k

f(i,k)xizk ,

where f(i,k) is the number of words w ∈ Ai of type τm(w) = zk, with the restriction that w does not contain
occurrences of any ui (i.e., the ui are forbidden from appearing as subwords of w). In other words, FS(x, z) gives
the number of words of length i ≥ n that (1) do not contain any subwords from the set S, and (2) have a given list of
subwords of length m and their frequencies.

We use P̃S to denote the k × k submatrix of P̃ by with the set of rows and columns S, where P̃ is defined by (6).
Let

MS =


G

(m)
n (x, z) Ku1 Ku2 . . . Kuk

Rτu1
p̃u1,u1 p̃u1,u2 . . . p̃u1,uk

...
...

...
. . .

...
Rτuk

p̃uk,u1 p̃uk,u2 . . . p̃uk,uk

 ,

where Kτ
w, Rτw and G(m)

n (x, z) are defined by (7), (8) and (9) respectively.
Then

FS(x, z) = xn det P̃−1
S det MS . (10)
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3 Proof of Theorem 2.4
We recall that all the qn × qn matrices used here have their rows and columns indexed by the words from An =
{v0, . . . , vqn−1} arranged in increasing lexicographic order.

We define ĨS to be the qn × qn diagonal matrix with the (v, v)th entry equal to 0 if v ∈ S, or 1 otherwise. The
qn × qn diagonal matrix T is defined to have the (v, v)th entry equal to τm(v).

The (u, v)th entry of the matrix xn(I− xD(m)
n (z)Mn)−1T is equal to∑

w

x|w|τm(w) ,

where the sum is over all words w of length ≥ n with prefix u and suffix v.
Since we do not want to count words w that contain subwords from S, we need to delete the vertices u1, u2, . . . , uk

from Bn(A), so we use the adjacency matrix of the resulting matrix instead of Mn. Thus the (u, v)th entry in the
matrix

xn

(
ĨS +

∑
i≥1

xi(̃ISD(m)
n (z)MnĨS)i

)
T = xnĨS(I− xD(m)

n (z)MnĨS)−1T

is
∑
w x
|w|τm(w), where the sum is over all words w of length ≥ n, with prefix u and suffix v, with the restriction

that w does not contain any subwords from S. Hence

FS(x, z) = xntrace(̃IS(I−D(m)
n (xz)MnĨS)−1T E) ,

where E is the matrix with all entries equal to 1.
Let Q = An − S = {h1, h2, . . . , hl}, where l = qn − k and hi are ordered in increasing lexicographic order. We

use A to denote the matrix obtained by deleting the S rows and columns from the matrix P̃−1. By TA we denote the
matrix obtained by deleting the S rows and columns from the matrix T. Then ĨS(I−D(m)

n (xz)MnĨS)−1 is the qn×qn
matrix that has zeros in the S columns and rows and submatrix A−1 in the Q rows and columns. Thus

FS(x, z) = xntrace(A−1TAE) ,

where E is the (qn − k)× (qn − k) matrix with all entries equal to 1.
Let σ denote the sum of all entries of the matrix A−1TA. Then FS(x, z) = xnσ. The rows and columns of A and

TA are indexed by Q = {h1, h2, . . . , hl}.
By Laplace’s Extension Theorem

σ =
1

det A

∑
v∈Q

τm(v)
∑
w∈Q

Kv,w ,

where Kv,w is the cofactor of the (v, w)th entry of A. For a word u ∈ An, let πu denote the number of words in S
that are less than u. Notice that, (−1)πv+πw Kv,w is the cofactor of the (k + 1) × (k + 1) submatrix Mv,w of P̃ with
row set S ∪ {w} and column set S ∪ {v} (the cofactor of a submatrix X of a matrix Y is (−1)µ det Z, where matrix
Z is obtained by deleting the rows and columns of X from Y, and µ is the sum of the indices of rows and columns of
X). Thus

Kv,w =
(−1)πv+πw det Mv,w

det P̃
,

and
σ =

1

det A det P̃

∑
v∈Q

(−1)πvτm(v)
∑
w∈Q

(−1)πw det Mv,w .

Since
∑
w∈Q(−1)πw det Mv,w =

∑
w∈An det M′v,w, where

M′v,w =


p̃w,v p̃w,u1 p̃w,u2 . . . p̃w,uk

p̃u1,v p̃u1,u1 p̃u1,u2 . . . p̃u1,uk

...
...

...
. . .

...
p̃uk,v p̃uk,u1 p̃uk,u2 . . . p̃uk,uk

 ,
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then
∑
w∈An det M′v,w = Mv , where

Mv =


Kv Ku1 Ku2 . . . Kuk

p̃u1,v p̃u1,u1 p̃u1,u2 . . . p̃u1,uk

...
...

...
. . .

...
p̃uk,v p̃uk,u1 p̃uk,u2 . . . p̃uk,uk

 ,

and det A det P̃ = det P̃S . Thus

σ = det P̃−1
S

∑
v∈Q

(−1)πvzτm(v) det Mv = det P̃−1
S det MS ,

and (10) follows.

4 Proof of Theorem 2.1
We utilize some results from the literature of combinatorics on words. For a starting point to the theory of combina-
torics on words, we refer the reader to (GO81a), (JS94), (JS05), (RD04), and (RS98); this is merely a sampling of the
growing literature in this area. For a collection of recent results, see the three volumes edited by Lothaire, especially
(Lot05).

Underlying much of the theory of combinatorics on words is a precise means of characterizing the extent to which
a word overlaps with itself. For this purpose, for each word w ∈ Am, we recall from (1) that the autocorrelation
polynomial of w is

Sw(z) =
∑

i∈P(w)

P(wi+1 . . . wm)zm−i ,

where P(w) denotes the set of i’s satisfying w1 . . . wi = wm−i+1 . . . wm. In other words, for each i ∈ P(w), the
prefix of w of length i is identical to the suffix of w of length i.

Now we define a useful language—and its associated generating function—frequently used in combinatorics on
words. We write

Rw = {v ∈ A∗ | v contains exactly one occurrence of w, located at the right end} .

We write the generating function associated with this language as

Rw(z) =
∑
v∈Rw

P(v)z|v| .

It is well-known (see, for instance, (JS94), (JS05), (RD04), (RS98)) that this generating function can be expressed in
terms of Sw(z) as follows: If w ∈ Am, and if we define

Dw(z) = (1− z)Sw(z) + P(w)zm ,

then we have

Rw(z) =
P(w)zm

Dw(z)
.

Next, we describe the generating functions associated with E[Xn,k] and E[X̂n,k]. Analogous, but more complicated,
generating functions for the second moments of Xn,k and X̂n,k can be established using a similar methodology, but
more intricate word comparisons must be utilized.

The kth subword complexity of a word w ∈ An denotes the number of distinct subwords of length k (i.e., blocks
of k contiguous letters) that appear in w. Our goal is to characterize the random variable Xn,k, defined as the kth
subword complexity of a randomly selected word w ∈ An.

We recall that Y = Y1Y2Y3 . . . denote a sequence of symbols drawn from A. We assume that the Yi’s are chosen
independently, with P{Yi = aj} = pj . We recall that Xn,k denotes the number of distinct words fromAk which each
appear as a subword of Y1Y2 . . . Yn+k−1.
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We also recall that Y (l) = Y
(l)
1 Y

(l)
2 Y

(l)
3 . . . denote, for each l, a sequence of symbols drawn from A. Again, we

assume that all of the Y (l)
i ’s are chosen independently, with P{Y (l)

i = aj} = pj . We recall that X̂n,k denotes the
number of distinct words in the collection {Y (l)

1 Y
(l)
2 . . . Y

(l)
k | 1 ≤ l ≤ n}.

Without loss of generality, we assumed that 0 < p1 ≤ p2 ≤ · · · ≤ pq < 1. We recall that p := pq and δ =
√
p. We

choose c > 0 such that p−c1 δ < 1, and we have selected ε with 0 < ε < c. Finally, we defined µ = p−c1 δ.
We define Gk(z) =

∑
n≥0 E[Xn,k]zn and Ĝk(z) =

∑
n≥0 E[X̂n,k]zn as the ordinary generating functions for

E[Xn,k] and E[X̂n,k], respectively.
We observe that w ∈ Ak makes a contribution to Xn,k if and only if Y begins with a word from RwA∗ of length

k + n− 1, which happens with probability

[zk+n−1]
(
Rw(z)
1− z

)
.

It follows immediately that ∑
n≥0

E[Xn,k]zn =
∑
w∈Ak

Rw(z)
(1− z)zk−1

.

Since Rw(z) = P(w)zk/Dw(z), it follows that

Gk(z) =
∑
w∈Ak

P(w)z
(1− z)Dw(z)

. (11)

Next we observe that that w ∈ Ak makes a contribution to X̂n,k if and only if at least one Y (l) begins with w, which
happens with probability

1− (1−P(w))n .

So
E[X̂n,k] =

∑
w∈Ak

(1− (1−P(w))n) . (12)

Summing E[X̂n,k]zn over all n ≥ 0, it follows that

Ĝk(z) =
∑
w∈Ak

P(w)z
(1− z)(1− (1−P(w))z)

. (13)

We have P{Yi = aj} = pj and P{Y (l)
i = aj} = pj . Without loss of generality, we assumed that 0 < p1 ≤ p2 ≤

· · · ≤ pq < 1. We observe that pq ≤
√
pq < 1, so there exists ρ > 1 such that ρ√pq < 1, and of course ρpq < 1 too.

We recall that δ = √pq .
We recall from (1) the definition of the autocorrelation polynomial of a word w. The autocorrelation polynomial

Sw(z) records the extent to which w overlaps with itself. Of course, every word w has a trivial (complete) overlap
with itself, which provides a contribution of “1” to Sw(z). With high probability, we observe that the other overlaps
of w with itself are very small, providing contributions to Sw(z) of much smaller order. We formalize this notion with
the following well-known lemma, which appears often throughout the literature of combinatorics on words (see, for
instance, (JS05)). We use the Iverson notation [[A]] = 1 if A holds, and [[A]] = 0 otherwise.

Lemma 4.1 Consider θ = (1 − pρ)−1, δ =
√
p, and ρ > 1 with ρδ < 1. When randomly selecting a binary word

w ∈ Ak, the autocorrelation polynomial Sw(z) (at z = ρ) is approximately 1, with high probability. More specifically,∑
w∈Ak

[[ |Sw(ρ)− 1| ≤ (ρδ)kθ ]] P(w) ≥ 1− θδk .

Lemma 4.2 Recall δ =
√
p ; also ρ > 1 is defined such that ρδ < 1. Consider the polynomial Dw(z) = (1 −

z)Sw(z) + P(w)zm, where Sw(z) denotes the autocorrelation polynomial of w (see (1)). There exists an integer K
such that, for every word w with |w| ≥ K, the polynomial Dw(z) has exactly one root in the disk |z| ≤ ρ.
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Throughout the rest of the discussion below, we fix the “K” mentioned in the lemma above, and we consistently
restrict attention to word lengths k ≥ K.

For w with |w| = k ≥ K, since Dw(z) has a unique root in the disk |z| ≤ ρ, we denote this root as Aw, and we
write Bw = D′w(Aw). Using bootstrapping, we have

Aw = 1 +
1

Sw(1)
P(w) +O(P(w)2) ,

Bw = −Sw(1) +
(
k − 2S′w(1)

Sw(1)

)
P(w) +O(P(w)2) . (14)

Next we compare
∑
n≥0 E[Xn,k]zn to

∑
n≥0 E[X̂n,k]zn.

We define
Qk(z) = Gk(z)− Ĝk(z) =

∑
n≥0

(
E[Xn,k]− E[X̂n,k]

)
zn

and the contribution to Qk(z) from w as

Q(w)(z) =
P(w)z
1− z

(
1

Dw(z)
− 1

1− (1−P(w))z

)
.

By (11) and (13), we know that
Qk(z) =

∑
w∈Ak

Q(w)(z) .

We also define Qn,k = [zn]Qk(z) and Q(w)
n = [zn]Q(w)(z). So Qn,k is exactly E[Xn,k] − E[X̂n,k], and Q(w)

n is the
contribution to Qn,k from w. Our ultimate goal is to prove that Qn,k is asymptotically negligible, i.e., E[Xn,k] and
E[X̂n,k] have the same asymptotic growth.

Using Cauchy’s Integral Formula, we have

Q(w)
n =

1
2πi

∮
P(w)z
1− z

(
1

Dw(z)
− 1

1− (1−P(w))z

)
dz

zn+1
,

where the path of integration is a circle about the origin with counterclockwise orientation. Using a counterclockwise,
circular path of radius ρ about the origin, we also define

I(w)
n (ρ) =

1
2πi

∫
|z|=ρ

P(w)z
1− z

(
1

Dw(z)
− 1

1− (1−P(w))z

)
dz

zn+1
, (15)

and by Cauchy’s theorem, it follows that

Q(w)
n = I(w)

n (ρ)− Res
z=Aw

P(w)z
(1− z)Dw(z)zn+1

+ Res
z=1/(1−P(w))

P(w)z
(1− z)(1− (1−P(w))z)zn+1

− Res
z=1

P(w)z
(1− z)Dw(z)zn+1

+ Res
z=1

P(w)z
(1− z)(1− (1−P(w))z)zn+1

.

We compute the four relevant residues, namely

Res
z=Aw

P(w)z
(1− z)Dw(z)zn+1

=
P(w)

(1−Aw)BwAnw
,

Res
z=1/(1−P(w))

P(w)z
(1− z)(1− (1−P(w))z)zn+1

= (1−P(w))n ,

Res
z=1

P(w)z
(1− z)Dw(z)zn+1

= −1 ,

Res
z=1

P(w)z
(1− z)(1− (1−P(w))z)zn+1

= −1 .
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We define

fw(x) = − P(w)
(1−Aw)BwAxw

+ (1−P(w))x .

We want to prove that
∑
w∈Ak fw(x) is asymptotically small. We first observe that

∑
w∈Ak fw(x) is absolutely

convergent for all x. Then we define f̄w(x) = fw(x)−fw(0)e−x. Next we utilize the Mellin transform of f̄w(x). (See
(FGD95) and (Szp01) for details about the Mellin transform.) Since f̄w(x) is exponentially decreasing as x → +∞,
and is O(x) when x→ 0, then the Mellin transform of f̄w(x), namely

f̄∗w(s) =
∫ ∞

0

f̄w(x)xs−1dx ,

is well-defined for <(s) > 1. We have

f̄∗w(s) = − P(w)
Bw(1−Aw)

∫ ∞
0

(
1
Axw
− 1
)
xs−1dx+

∫ ∞
0

((1−P(w))x − 1)xs−1dx .

Using the well-known properties of the Mellin transform (see (FGD95) and (Szp01)), it follows that

f̄∗w(s) = − P(w)
Bw(1−Aw)

Γ(s)
(
(logAw)−s − 1

)
+

((
log

1
1−P(w)

)−s
− 1

)
Γ(s) .

From the bootstrapped equations for Aw and Bw given in (14), it follows that

f̄∗w(s) = −
(
1 +O(|w|P(w)2)

)
Γ(s)

((
P(w)
Sw(1)

)−s
(1 +O(P(w)))− 1

)
+
(
P(w)−s(1 +O(P(w)))− 1

)
Γ(s) ,

which simplifies to

f̄∗w(s) = Γ(s)P(w)−s
(

1− 1
Sw(1)−s

)
(1 +O(P(w))) .

Now we define g∗(s) =
∑
w∈Ak f̄∗w(s). We compute

g∗(s) =
∑
w∈Ak

P(w)−sΓ(s)
(

1− 1
Sw(1)−s

)
O(1)

=
∑
w∈Ak

P(w)−s−1Γ(s)
(

P(w)(Sw(1)−s − 1)
Sw(1)−s

)
O(1)

= (sup{p−<(s)−1
q , 1})kδkΓ(s)O(1) ,

where the last equality follows from Lemma 4.1, which precisely describes the fact that the autocorrelation polynomial
is close to 1 with very high probability. We note that when s = 0, the pole at Γ(s) is canceled.

We note that there exists c > 0 such that p−c1 δ < 1. So g∗(s) is analytic in <(s) ∈ (−1, c). We choose ε > 0 with
the property that 0 < ε < c. Then we have

Qn,k − I(w)
n (ρ) =

1
2πi

∫ ε+i∞

ε−i∞
g∗(s)n−sds+

∑
w∈Ak

fw(0)e−x .

The first term is O(n−ε)O((p−c1 δ)k) since g∗(s) is analytic in the strip <(s) ∈ (−1, c). The second term is O(e−x).
Finally, Lemma 4.3 (given below) concerning I(w)

n (ρ) allows us to complete the proof of Theorem 2.1. In the statement
of Theorem 2.1, we use µ = p−c1 δ < 1.

Lemma 4.3 Consider δ =
√
p, and ρ > 1 with ρδ < 1. Recall from (15) that

I(w)
n (ρ) =

1
2πi

∫
|z|=ρ

P(w)z
1− z

(
1

Dw(z)
− 1

1− (1−P(w))z

)
dz

zn+1
,
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where Dw(z) = (1 − z)Sw(z) + P(w)zk for w ∈ Ak. The sum of I(w)
n (ρ) over all words w ∈ Ak is asymptotically

negligible, namely ∑
w∈Ak

I(w)
n (ρ) = O(ρ−n)O((ρδ)k) .

Proof: There exist constants C1, C2, and K2 such that, for all k ≥ K2 and all |z| = ρ, we have 1
|Dw(z)| ≤ C1 and

1
|1−(1−P(w))z| ≤ C2 for all w with |w| = k. The proof of this useful fact is straightforward. Thus

|I(w)
n (ρ)| = 2πρ

2π
P(w)z
1− z

P(w)z + 1− z −Dw(z)
Dw(z)(1− (1−P(w))z)

1
ρn+1

.

We note that |Dw(z) − (1 − z)| ≤ |1 − z||Sw(z) − 1| + |z|kP(w) ≤ (1 + ρ)(Sw(ρ) − 1) + (pqρ)k. Finally, using
Lemma 4.1, which formalizes the notion that the autocorrelation polynomial is close to 1 with high probability, the
result follows.

2

5 Auxiliary results.
In this section we show the connection between different types of correlation polynomial matrices, the adjacency
matrix of the de Bruijn graph and subword complexity related generating functions.

Recall the definition of the matrix CS given by Eq. 2. We are particularly interested in the case S = Ak. The matrix
in this case is CAk(z), namely, the qk × qk matrix whose rows and columns are indexed by the words of length k over
A arranged in increasing lexicographic order.

Example 5.1 Consider the case q = 2 and k = 3. In this case, the unweighted correlation polynomial matrix of all
words of length 3 over A = {a1, a2} is

CA3(z) =



z2 + z + 1 z2 + z z2 z2 0 0 0 0
0 1 z z z2 z2 z2 z2

z2 z2 z2 + 1 z2 z z 0 0
0 0 0 1 z2 z2 z2 + z z2 + z

z2 + z z2 + z z2 z2 1 0 0 0
0 0 z z z2 z2 + 1 z2 z2

z2 z2 z2 z2 z z 1 0
0 0 0 0 z2 z2 z2 + z z2 + z + 1


.

The matrix CAk(z) turns out to be very important because the matrices CS(z) for S ⊆ Ak, that are used in
Proposition 1.3, are principal submatrices of CAk(z). We will derive a simple formula for CAk(z) in terms of the
adjacency matrix of the de Bruijn graph.

Theorem 5.2 Let I denote the qn × qn identity matrix, and let E denote the qn × qn matrix of all 1s. Let Mn denote
the adjacency matrix of the de Bruijn graph Bn(A). The unweighted correlation polynomial matrix CAn(z) of all
words of length n over A is

CAn(z) = (I− znE)(I− zMn)−1 .

Proof: Consider two words w, u ∈ An. The (w, u)th entry of (Mn)i is the number of paths of length i in Bn(A) that
start in w and end in u. Equivalently, this is exactly the number of words in An+i with prefix w and suffix u. For
0 ≤ i ≤ n−1 the (w, u)th entry of (Mn)i is 1 if the suffix of w of length n− i coincides with the prefix of u of length
n− i; the (w, u)th entry is 0 otherwise. So, in either case, the (w, u)th entry of (Mn)i is exactly the coefficient of zi

in Cw,u(z), for all 0 ≤ i ≤ n− 1.
For larger values of i, we note that the entries of CAn(z) are each unweighted correlation polynomials. The degree

of an unweighted correlation polynomial Cw,u(z) is at most n− 1 for words w, u ∈ An, since words of length n have
overlaps of length at most n− 1. So each entry of CAn(z) has degree at most n− 1.

Thus
CAn(z) = I + zMn + · · ·+ zn−1(Mn)n−1 ,
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which simplifies to
CAn(z) = (I− zn(Mn)n)(I− zMn)−1 . (16)

For every pair of words w, u ∈ An, there is exactly one word of length 2n which starts with w and ends with u
(namely, wu). Thus, each entry of (Mn)n is simply “1”. So (Mn)n = E. From (16), we conclude CAn(z) =
(I− znE)(I− zMn)−1.

2

Corollary 5.3 The unweighted correlation polynomial matrix CAn(z) has eigenvalue λ1 = 1 with multiplicity qn−1
and also eigenvalue λ2 = (1− qnzn)/(1− qz) with multiplicity 1.

Proof: We recall that E denotes the qn × qn matrix of all 1s. So E has eigenvalue 0 with multiplicity qn − 1 and also
eigenvalue qn with multiplicity 1. Since (Mn)n = E, then Mn has eigenvalue 0 with multiplicity qn − 1 and also
eigenvalue q with multiplicity 1. It follows from Theorem 5.2 that CAn(z) has eigenvalue (1− qnzn)/(1− qz) with
multiplicity 1 and also eigenvalue 1 with multiplicity qn − 1.

2

Theorem 5.4 Let z = (z0, z1, . . . , zqm−1) and k = (k0, k1, . . . , kqm−1). Let zk denote the monomial zk00 zk11 . . . z
kqm−1
qm−1 .

Consider the generating function

Gn(x, z) =
∑

k∈(Z≥0)qn

∑
i≥n

c(i,k)xizk ,

where c(i,k) is the number of words w ∈ Ai of type τn(w) = zk. Then

Gn(x, z) = (1/q)xn−1trace((I− xD(n)
n (z)Mn)−1E)− (qx)n−1 ,

where D(n)
n is defined by Eq. 5, Mn is the adjacency matrix of the de Bruijn graph Bn(A), and E is the qn× qn matrix

of all 1s. .

Proof: For u, v ∈ An, and for i ≥ 0, the (u, v)th entry of (D(n)
n (z)Mn)i is

∑
w τn(w1 . . . wn+i−1), where the sum

is taken over all words w ∈ An+i with prefix u and suffix v. Therefore the number of words w ∈ An+i−1 of type
τn(w) = zk is the coefficient of zk in the sum of all entries of (1/q)(D(n)

n (z)Mn)i, or equivalently, the coefficient of
xn+i−1zk in (1/q)trace(xn−1(xD(n)

n (z)Mn)iE). Thus

Gn(x, z) = (1/q)xn−1
∞∑
i=1

trace((xD(n)
n (z)Mn)iE)

= (1/q)xn−1trace((I− xD(n)
n (z)Mn)−1E)− (1/q)xn−1trace(E)

= (1/q)xn−1trace((I− xD(n)
n (z)Mn)−1E)− (qx)n−1 .

2

Corollary 5.5 Let z = (z0, z1, . . . , zq−1). Consider

G1(x, z) =
∑

k∈(Z≥0)q

∑
i≥1

c(i,k)xizk ,

where c(i,k) is the number of words w ∈ Ai of type τ1(w) = zk. In other words, c(i,k) denotes the number of words
w ∈ Ai such that, for each i, the ith letter ai of A occurs exactly ki times in w. Then using n = 1 in Theorem 5.4
yields

G1(x, z) =
1

1− x
∑
i zi
− 1 .

Remark 5.6 Let ν(k) denote the number of non-zero ki’s in k = (k0, k1, ..., kqn−1). Then the number of words inAi
with nth subword complexity fw(n) = j is exactly the coefficient of

∑
ν(k)=j x

izk in Gn(x, z).
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Let m ≥ 1 and n ≥ 2m− 2. The generalized correlation polynomial matrix (on qm variables z = (z0, . . . , zqm−1))
of all words of An is the qn × qn matrix C(m)

n (z), whose rows and columns are indexed by the words of An arranged
in increasing lexicographic order, with the (u, v)th entry defined to be C(m)

v,w (z).
Considering the relative simplicity of the adjacency matrix of the de Bruijn graph, we give a method of computing

all the generalized correlation polynomials of words of length n.

Lemma 5.7 Let m ≥ 1 and n ≥ 2m − 2. Let z = (z0, z1, . . . , zqm−1) and k = (k0, k1, . . . , kqm−1). Consider the
qn×qn matrices H(m)

n (z) and T(m)
n (z) with rows and columns indexed by the words ofAn in increasing lexicographic

order. Define the (u, v)th entry of T(m)
n (z) as τm(w), where w is the suffix of length n+ 2m− 2 of uv. The diagonal

matrix H(m)
n is defined by

H(m)
n (z) = diag(z0, . . . , z0, . . . , zqm−1, . . . , zqm−1, . . . , z0, . . . , z0, . . . , zqm−1, . . . , zqm−1) ;

and consists of qn−2m+1 blocks z0, . . . , z0, . . . , zqm−1, . . . , zqm−1 that appear repeatedly along the diagonal, and
each zi occurs in such a block qm−1 times consecutively. Recall that Mn denotes the adjacency matrix of the de
Bruijn graph Bn(A).

The generalized correlation polynomial matrix (on qm variables z = (z0, . . . , zqm−1)) of all words of An is

C(m)
n (z) = (I− T(m)

n (z))(I−H(m)
n (z)Mn)−1 .

Proof: The proof of this lemma is similar to the proof of Lemma 5.2. The (u, v)th entry of (H(m)
n (z)Mn)i is∑

w τm(w′), where the sum is taken over all words w = w1w2 . . . wn+i with prefix u and suffix v; here, w′ =
wn−2m+3 . . . wn−m+i+1. For 0 ≤ i ≤ n − 1, if the suffix of length n − i of u coincides with the prefix of length
n− i of v, then the (u, v)th entry of (H(m)

n (z)Mn)i is τm(wn−2m+3 . . . wn−m+i+1) , where w = w1w2 . . . wn+i has
prefix u and suffix v; otherwise, the (u, v)th entry of (H(m)

n (z)Mn)i is 0. Therefore, the sum of the (u, v)th entries of
(H(m)

n (z)Mn)i for 0 ≤ i ≤ n− 1 is C(m)
u,v (z). So we obtain

C(m)
n (z) = I + H(m)

n (z)Mn + · · ·+ (H(m)
n (z)Mn)n−1 = (I− (H(m)

n (z)Mn)n)(I−H(m)
n (z)Mn)−1 .

We observe that T(m)
n (z) is (H(m)

n (z)Mn)n. Thus

C(m)
n (z) = (I− T(m)

n (z))(I−H(m)
n (z)Mn)−1 .

2
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