
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 5, MAY 2007 1799

Error Resilient LZ’77 Data Compression:
Algorithms, Analysis, and Experiments

Stefano Lonardi, Member, IEEE, Wojciech Szpankowski, Fellow, IEEE, and Mark Daniel Ward, Member, IEEE

Abstract—We propose a joint source–channel coding algorithm
capable of correcting some errors in the popular Lempel–Ziv’77
(LZ’77) scheme without introducing any measurable degradation
in the compression performance. This can be achieved because
the LZ’77 encoder does not completely eliminate the redundancy
present in the input sequence. One source of redundancy can be
observed when an LZ’77 phrase has multiple matches. In this
case, LZ’77 can issue a pointer to any of those matches, and a
particular choice carries some additional bits of information. We
call a scheme with embedded redundant information the LZS’77
algorithm. We analyze the number of longest matches in such a
scheme and prove that it follows the logarithmic series distribution
with mean 1=h (plus some fluctuations), where h is the source
entropy. Thus, the distribution associated with the number of
redundant bits is well concentrated around its mean, a highly
desirable property for error correction. These analytic results
are proved by a combination of combinatorial, probabilistic,
and analytic methods (e.g., Mellin transform, depoissonization,
combinatorics on words). In fact, we analyze LZS’77 by studying
the multiplicity matching parameter in a suffix tree, which in turn
is analyzed via comparison to its independent version, called trie.
Finally, we present an algorithm in which a channel coder (e.g.,
Reed–Solomon (RS) coder) succinctly uses the inherent additional
redundancy left by the LZS’77 encoder to detect and correct a
limited number of errors. We call such a scheme the LZRS’77 al-
gorithm. LZRS’77 is perfectly backward-compatible with LZ’77,
that is, a file compressed with our error-resistant LZRS’77 can
still be decompressed by a generic LZ’77 decoder.

Index Terms—Autocorrelation polynomial, combinatorics on
words, depoissonization, joint source–channel coding, Lempel–
Ziv’77 (LZ’77) scheme, Mellin transform, multiple matches,
pattern matching, Reed–Solomon (RS) code, suffix trees, tries.

Manuscript received May 26, 2005; revised January 15, 2007. The work of
S. Lonardi was supported in part by the National Science Foundation under
Grant DBI-0321756 a nd under NSF CAREER IIS-0447773. The work of
W. Szpankowski was supported in part by the National Science Foundation
under Grant CCR-0208709, the National Institutes of Health under Grant R01
GM068959-01, and by AFOSR under Grant FA8655-04-1-3074. The work of
M. D. Ward was supported by the National Science Foundation under Grant
0603821. The material in this paper were presented in part at the Data Com-
pression Conference, Snowbird, UT, March 2003 and the IEEE International
Symposium on Information Theory, Chicago, IL, June/July 2004.

S. Lonardi is with the Department of Computer Science and Engineering,
University of California, Riverside, CA 92521 US (e-mail: stelo@cs.ucr.edu).

W. Szpankowski is with the Department of Computer Sciences, Purdue Uni-
versity, West Lafayette, IN 47907 USA (e-mail: spa@cs.purdue.edu).

M. D. Ward is with the Department of Mathematics, University of Pennsyl-
vania, Philadelphia, PA 19104 USA (e-mail: ward2@math.upenn.edu).

Communicated by M. Effros, Associate Editor for Source Coding.
Color versions of Figures 1, 3, and 7 in this paper are available online at

http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2007.894689

I. INTRODUCTION

ERROR-resilient adaptive lossless data compression is a
particularly challenging problem because of two opposing

“forces.” Source coding tries to decorrelate as much as possible
the input sequence (i.e., by removing redundant information),
while channel coding introduces additional correlation (i.e.,
by adding redundant information) in order to protect against
errors. The devastating effect of errors in adaptive data com-
pression is a long-standing open problem [25]. In fact, in
many applications, a practical drawback of adaptive data com-
pression algorithms is their lack of resistance to errors. Joint
source–channel coding has emerged as a viable solution to this
problem.

The separation principle formulated by Shannon divides a
communication system into separate source coding and channel
coding subsystems that run independently; however, in today’s
communication technology this rigid separation is very lim-
iting. In particular, this principle ignores many imperfections
of real communication systems, such as the fact that channel
coding is incapable of correcting all errors. Uncorrectable
errors are inevitable; designing encoders while ignoring this
fact simply leads to extremely fragile source codes, in which
one single error can potentially yield catastrophic failures. Joint
source–channel coding strikes a balance between source bits
versus channel bits, which in turn requires some adjustments
in both the source coding and channel coding strategies. Our
approach is somewhat orthogonal to most works in this area.
We use redundancy bits left by the source coder to protect
against errors without degrading the compression rate. The
price we pay is that we only correct a few errors, and we do not
achieve a positive error bit rate (i.e., we are unable to correct
a number of errors proportional to the size of a block). We
do not address here error propagation (cf. [25]); however, by
eliminating errors, our algorithm implicitly protects against
limited error propagation.

In this paper, we deal with one of the best known adaptive
data compression schemes, namely that of Ziv and Lempel
published in their 1977 seminal paper [33]. The popular LZ’77
compression scheme works online. It compresses phrases by
consecutively replacing the longest prefix of the noncompressed
portion of a file with a pointer and the length of the prefix.
The lack of error resistance of LZ’77 is a well-recognized
problem. A few years ago we read the following posting on
the comp.compression newsgroup: “ I’m a casualty of
corrupt tar’d1 gzipped files on Solaris 8. (gzip 1.3) Is

1tar is a common archiver under the Unix operating system.

0018-9448/$25.00 © 2007 IEEE

1800 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 5, MAY 2007

Fig. 1. The multiplicity of the next phrase is four (M = 4). Choosing one of
the four possible pointers recovers two redundant bits.

there a reason why there are no compression utilities that allow
controlled amounts of redundancy for error correction?
How much overhead would be needed to correct these?”

Indeed, we asked ourselves, how much overhead is needed in
LZ’77 to correct errors? The surprising answer is that there is
no need for additional overhead in order to correct some errors
in LZ’77. This seemingly impossible goal is achieved in prac-
tice thanks to the fact that the LZ’77 encoder is unable to com-
pletely decorrelate the input sequence. Some implicit redun-
dancy, which we precisely quantify in this paper, is still present
in the compressed stream and can be exploited by the encoder.
The additional redundancy derives from the encoding of phrases
for which one has a choice among possible pointers. In
practice, if there are copies of the longest prefix, we recover

redundant bits by choosing one of the pointers (see
Fig. 1). We call such a scheme with multiple pointers the LZS’77
algorithm.

In the first part of the paper, we present an algorithm for
channel coding that exploits the redundant bits identified by
LZS’77. To detect and correct errors, we choose Reed–Solomon
(RS) codes computed on blocks of 255 bytes of compressed
data. Given the maximum number of errors that the RS code
can correct, the parity bits of the RS code will be embedded in
the extra redundant bits extracted from the pointer multiplicity.
We should point out that if is large then we may not always
have enough redundant bits to embed the parity bits. The algo-
rithm that incorporates the RS channel coding into LZS’77 is
referred to throughout as the LZRS’77 scheme.

As mentioned earlier, our basic algorithm allows one to cor-
rect only a few errors, thus we set , and is rather
small in our implementations. In fact, we prove theoretically that
asymptotically the average number of longest phrases is
leading to . We should observe, however, that even
single errors can have devastating effects. It has been proved re-
cently [4] that a single error in LZ’77 may corrupt up to
phrases, thus about symbols, where is the size
the file to be compressed. Furthermore, a simple modification
of our algorithm (e.g., instead of looking for the longest match
we just consider a “long enough” match) allows to change
adaptively with the availability of redundancy bits in the stream
(i.e., will slowly grow with) and still preserve the asymp-
totic optimality of the compression bit rate (see Remark (i) after
Theorem 1).

In the second part of this paper, we theoretically quantify the
amount of redundancy left by the LZ’77 encoder for error pro-
tection. Thus, we resort to analyzing the number of pointers in
the LZS’77 schemes, a problem never addressed before. We let

denote the number of pointers (longest matches) into the

database when bits have already been compressed. We are
primarily interested in precisely determining the asymptotics of
the random variable and its concentration around the mean.
A thorough analysis of the variable yields a characteriza-
tion of the degree to which error correction can be performed in
the scheme discussed above. We recall that bits are
available for detecting and correcting errors.

Suffix trees provide a natural way to study the variable .
A suffix tree [27] is a digital search tree (i.e., a trie [27]) built
from all the suffixes of a single string (the database in our case).
In a suffix tree, corresponds to the number of leaves in the
subtree rooted at the branching point of the th insertion.
We refer to as the multiplicity matching parameter. As it
turns out, strings in suffix trees are highly dependent on each
other. This dependency complicates the precise analysis of ;
therefore, we also consider the analogous situation, where a trie
is built over independent strings. More specifically, we study the
variable associated with the number of leaves in the subtree
rooted at the branching point of the th insertion in a trie.
After determining the asymptotics of , we prove that
and have asymptotically identical distributions.

The main theoretical result consists of a precise characteri-
zation of all the moments of and its limiting distribution.
In particular, we show that for memoryless sources,2 the av-
erage number of pointers is , where is the entropy rate.
We also show that the limiting distribution of follows the
logarithmic series distribution, that is

where is the probability of generating a “ .” Thus, the number
of pointers is well concentrated around the mean, which is a
highly desirable property for channel coding. Still, it is more
likely to have one occurrence of the longest phrase in the data-
base than many, but the probability of seeing two longest phrases
is only four times smaller than finding a single longest phrase.
In practice, we usually find more than one match, as shown in
Section II.

In order to prove our main result we use a battery of analytic
tools, including analytical poissonization and depoissonization,
the Mellin transform, and complex analysis. To prove that suffix
trees and independent tries have similar multiplicity matching
parameters, we derive bivariate generating functions for and

using combinatorics on words, as recently surveyed in [17].
We compare the generating functions for and by uti-
lizing complex asymptotics.

To the best of our knowledge, the scheme described here is
the first joint source–channel LZ’77 algorithm. In [25], Storer
and Reif address the issue of error propagation but not error
recovery (see [21] for an analysis of the Storer and Reif al-
gorithm). There are, however, joint source–channel coding al-
gorithms for arithmetic coding and other variable-length codes
(see, e.g., [23]). Recently, we have proposed a novel scheme to
extract redundant bits from LZ’78/LZW streams [31].

Regarding our theoretical results, the multiplicity matching
parameter was never previously studied in tries and suffix trees.
However, the methodology used here to study the matching

2Our analysis can be extended to Markov sources using the techniques devel-
oped in this paper.

LONARDI et al.: ERROR RESILIENT LZ’77 DATA COMPRESSION 1801

parameter in tries is well established within the analytic algo-
rithmic community [27]. The analysis of in a suffix tree
is new and quite challenging. The basic idea of comparing
suffix trees to independent tries was established by Jacquet and
Szpankowski [11] and recently simplified by these authors in
[17]. Other aspects of suffix trees have been studied in [5], [7],
[26].

The paper is organized as follows. In Section II-A, we de-
scribe the LZS’77 encoder and present our main theoretical re-
sults. In Section II-B, we design the encoder and decoder for the
LZRS’77 scheme and in Section II-C discuss the experiment re-
sults. The main theoretical result is proved in Sections III–V. In
Section III, we provide a streamlined analysis and the roadmap
of the proof. Independent tries are discussed in Section IV while
suffix trees are analyzed in Section V.

II. MAIN RESULTS

In this section, we present our main algorithmic, theoretical,
and experimental results. We first describe a modified LZ’77
scheme, called LZS’77, in which we recover redundant infor-
mation by identifying multiple longest matches. In Theorem 1,
we quantify the redundant information by analyzing the variable

, associated with the number of longest matches when the
database sequence is of length . Finally, the recovered redun-
dant bits are used in a new algorithm called LZRS’77, in which

errors are corrected at each stage of the compression. We
end the section by reporting experimental results on LZRS’77.

A. Redundant Information in LZS’77

Let be a text of length over a finite alphabet . We write
to indicate the th symbol in . We use as

shorthand for the substring , where
, with the convention that . Substrings of the form

correspond to prefixes of , and substrings of the form
correspond to the suffixes of .

The LZ’77 algorithm [33] processes the data online as it is
read, i.e., it parses the file sequentially left to right and looks
into the sequence of past symbols (called the database) to find a
match with the longest prefix of the string starting at the current
position. The longest prefix is replaced with a pointer, which is
a triple composed of (position, length, symbol). Several varia-
tions on LZ’77 have been proposed (see, e.g., [3] and references
therein), but the basic principle remains the same.

Let us suppose that the first symbols of the string
have been already parsed into phrases, i.e.,

, where each is a nonempty string
over . In order to identify the th phrase, LZ’77 looks for
the longest prefix of that matches a substring of .
If is the substring that matches the longest
prefix, then the next phrase is . The algorithm
issues the pointer and updates the current position
to . The symbol is needed to be able to advance
when , which is common in the very beginning of the
encoding process. The use of a raw symbol within each pointer
is wasteful in practice, because it can often be included in the
next pointer. Later, we will assume that the LZ’77 compressed
stream is just a sequence of (position, length) pointers, as it is
implemented in gzip and other encoders.

Fig. 2. Recovering redundant bits K in LZ’77. Here, X is the text, K repre-
sents the redundant bits, P is the compressed stream of pointers, and D is the
decompressed text.

In order to recover additional bits to be used for channel
coding, we slightly modify the LZ’77 scheme. The resulting al-
gorithm, called LZS’77, allows one to embed some bits of an-
other binary string . We define a position corresponding to
the beginning of a phrase to have multiplicity if there exist
exactly matches for the longest prefix that starts at position

in . The positions with multiplicity are the places
where we can embed some of the bits of . Specifically, the next

bits will drive the selection of one particular pointer
out of the choices (see Fig. 1). These additional bits can be
used for various purposes such as authentication [2] or error
correction as described next. In passing, we should acknowl-
edge that the idea of detecting multiple matches of the longest
LZ’77 prefix was already considered by Fiala and Greene [6] as
a strategy to improve compression. In their scheme C2, the en-
coder uses a suffix tree to detect two of more copies of the same
substring in the database, and only one copy is encoded in the
compressed representation.

Suppose again that the initial portion of , say , has
been already parsed. Let

, be the set of feasible pointers for
the longest prefix of , where , and for all

. If , we skip to the next phrase, and
no extra bits are embedded. When , we use the next

bits of to choose one of the pointers. Sup-
pose that the first bits of have already been embedded
in previous phrases. We emit the pointer , we
move the current position to , and we increment by

. The complete algorithm is summarized in Fig. 2.
One could extract more bits from the phrase multiplicity by

using a start-step-stop binary code [6] that maximizes the code
length for a given . For example, if one could assign

to the first copy, to the second, for the third, for

1802 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 5, MAY 2007

the fourth, for the fifth, and for the sixth. Compared to
the original scheme of embedding bits by selecting
one specific copy out of the first four (among the six available),
we would embed an additional bit with probability .

We want to stress that these changes do not affect the internal
structure of LZ’77 encoding, other than a possible re-shuffling
of the pointers. A file compressed with LZS’77 can still be
decompressed by a standard LZ’77 algorithm. The fact that
LZS’77 is “backward-compatible” makes it possible to deploy
it gradually over the existing LZ’77 algorithm, without dis-
rupting service.

From the preceding description, it is clear that the size of the
embedded text depends on the number of longest matches

when the first bits of the input have already been com-
pressed. We analyze for a binary memoryless source, and
consider the string , where the ’s are inde-
pendent and identically distributed (i.i.d.) random variables on
the binary alphabet with and .
Without loss of generality, we assume throughout the discus-
sion that . Let denote the th suffix of . In other
words, . Consider the longest prefix
of such that also has as a prefix, for some with

. Then can be defined as the number of ’s
(with) that also have as a prefix. We formally de-
fine the multiplicity matching parameter as

has as a prefix (1)

Our goal is to understand the probabilistic behavior of the
variable . In particular, we compute the th factorial mo-
ment , and the
limiting distribution for large . We accomplish
this by finding the probability generating function and
extracting its asymptotic behavior for large . The main result
presented next is proved in Section III with details explained in
Sections IV and V.

Theorem 1: Consider a binary memoryless source, and let
be its entropy rate.

(i) There exists depending on such that the th fac-
torial moment of is

(2)

where is the Euler gamma function, and is a
periodic function with mean and small modulus for

rational, and asymptotically zero for
irrational.

(ii) The probability generating function

is for some

(3)

where is a periodic function with mean and small
modulus for rational and asymptotically zero
otherwise. More precisely

(4)

where for and some we have
. The above translates into

(5)

for some .

A few remarks are in order. We first comment on the behavior
of the function . For instance, if we set then

The approximate values of are given
in the following table for the first ten values of .

We note that, if is irrational, then as
. So does not exhibit fluctuation when is

irrational.
For large we conclude that on average there are eligible

pointers and that follows the logarithmic series distribution,
i.e.,

plus some small fluctuations. Observe that the probability is
maximal for , but is only four times smaller;
for we also have

LONARDI et al.: ERROR RESILIENT LZ’77 DATA COMPRESSION 1803

Fig. 3. The right-to-left sequence of operations on the compressed blocks as processed by the LZRS’77 encoder.

thus, the distribution is rather “flat.” This bears some immediate
consequences for the LZRS’77 scheme since the number of cor-
rected errors depends on . Knowing that is highly
concentrated around its mean is quite reassuring and contributes
to a good behavior of the algorithm in practice. In fact, experi-
mental results presented in the next subsection show that there
are sufficiently many redundant bits to warrant the use of the
LZRS’77 error correction scheme.

B. Error-Resilient LZRS’77 Scheme

We now describe how to use the extra redundant bits to
achieve error resilience. Recall that we are protecting the
stream of pointers, which is represented by a sequence of
bytes. We chose RS codes [19], which are block-based error
correcting codes widely used in digital communications and
storage.

RS codes belong to the family of Bose–Chaudhuri–
Hocquenghem (BCH) codes (see, e.g., [18]). An RS code
is specified as , where is the size of the block and is
the size of the payload. Let the datum be a symbol drawn from
an alphabet of cardinality . The encoder collects symbols
and adds parity symbols to make a block of length .
An RS decoder can correct up to errors in a block, where

. One symbol error occurs if one or more of the
bits of the symbol (up to) is wrong.

Given a symbol size , the maximum block length for a RS
code is . For example, the maximum length of a
code with 8-bit symbols is 255 bytes. The family of
RS codes for is therefore . Each block
contains 255 bytes, of which are data and are parity.
Errors up to bytes anywhere in the block can be automatically
detected and corrected.

We can use the extra redundancy bits of LZS’77 to embed
extra bytes, as described in the following. The encoder, called
LZRS’77, first compresses using the standard LZ’77. The
data is broken into blocks of size . Then, blocks are
processed in reverse order, beginning with the very last. When
processing block , the encoder computes first the RS parity bits
for the block and then it embeds the extra bits in the pointers
of block using the method described in Section II-A. The se-
quence of operations of the encoder is illustrated in Fig. 3. If one
wants to protect the first block as well, then the parity bits of the
first block are not embedded, but saved at the beginning of the
compressed file. Note that if we decide to store these extra bits
at the beginning of the file, the compressed file is not compat-
ible any more with the standard LZ’77 decoder. To keep the file
backward compatible one must forgo protecting the first block
of the compressed data.

Fig. 4. Error-resilient LZ’77 algorithm. Here X is the text, e is the maximum
number of errors that can be corrected in each block of 255� 2e bytes.

If the user selects large values for , it is possible that the
LZ’77 stream may not have enough redundant bits to embed
the RS parity bits. This problem can be detected in the encoding
phase, when the blocks of size are processed in reverse
order. If any block does not have enough redundancy to store the

extra bytes, an error message is printed, and the user has to
choose a smaller value for .

The decoder receives a sequence of pointers, preceded by the
parity bits of the first block. It the first breaks, the remainder of
the input streams into blocks of size . Then it uses the
parity bits to correct the first block. Once block is correct, it
decompresses using LZS’77. This not only reconstructs the
initial portion of the original text, but it also recovers the bits
stored in those particular choices for the pointers. These extra
bits are collected, and they become the parity bits for the second
block. The decoder can therefore detect and correct errors in

. Block is then decompressed, and the parity bits for
are recovered. This process continues until all blocks have been
decompressed. A high-level description of the encoder and the
decoder is shown in Fig. 4.

The reason the encoder needs to process the blocks in reverse
order should now be apparent. The encoder cannot compute the
RS parity bits before the pointers are finalized. We embed the RS
bits for the current block in the previous block, because the de-
coder needs to know the parity bits of a block before it attempts
to decompress it. This has the unfortunate effect of making the
encoder offline, since it requires the encoder to keep the entire

1804 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 5, MAY 2007

Fig. 5. The average value of the pointer multiplicityM for increasing prefixes of files paper2 (left), and news (right) from the Calgary corpus.

set of buffers in primary memory. The problem can be allevi-
ated by breaking up large inputs in chunks of a size that could
be easily stored and processed in main memory.

Even if now the decoder requires two passes, the asymptotic
worst case time complexity for the encoder and the decoder is
unchanged. If one discounts the extra time spent by error detec-
tion/correction algorithm, both encoder and decoder still run in
linear time in the size of the input.

C. Experimental Results

In order to validate our theoretical studies presented in The-
orem 1 and test the correctness of our LZS’77 scheme, we in-
troduced several implementations. In the first one, we designed
an implementation of LZ’77 based on suffix trees [22], and we
kept track of the multiplicity for each phrase of the LZ’77
parsing, when the length of the phrase is greater than two. The
average value of is shown in Fig. 5, for increasing lengths of
the prefixes. Note that for both graphs, the average for ap-
pears to converge asymptotically to a constant, as Theorem 1
suggests.

In the second, we modified the code ofgzip-1.2.4 to eval-
uate the impact of our method on compression performance. The
tool gzip is an implementation of the sliding-window variant
of LZ’77, that issues pointers in a fixed-size window preceding
the current position. Among the various parameters available,
gzip allows the user to specify the level of compression from
level (worst, fastest) to level (best, slowest). This param-
eter mainly controls the size of the sliding window (bigger win-
dows correspond to higher compression but slower programs),
but also activates the “lazy evaluation” (or “nongreedy parsing”)
strategy [9]. The lazy evaluation scheme is active from level
to level .

The modified gzip, called gzipS, directly implements
LZS’77 as described in Section II-A. It allows the user to
specify a second file, which contains the text to be embedded
in the pointers. The compression performance of the gzipS
with respect to the original gzip was measured, and it is
illustrated in Table I on the Calgary corpus dataset. Since a
nongreedy parsing would introduce additional complexity in
the LZS’77 decoder to recover correctly the extra redundant

TABLE I
THE COMPRESSION OF “GZIP -3” VERSUS “GZIPS -3” FOR THE FILES OF

THE CALGARY CORPUS; THE LAST COLUMN SHOWS THE TOTAL

NUMBER OF AVAILABLE BYTES FOR ERROR CORRECTION

bits, we used the compression level -3 but we increased the
size of the sliding window to the one used in level -9 in order
to maximize the chances to find multiple copies.

According to the documentation, in the presence of multiple
copies of the longest prefix gzip always chooses the most re-
cent occurrence in the sliding window. Pointers are represented
as a pair (displacement, length) where the displacement is the
distance between the copy in the database and the current po-
sition, and they are Huffman encoded. By choosing always the
most recent occurrence gzip produces frequent short displace-
ments that get shorter representations in the Huffman tree. Be-
cause of this, the embedding of the message slightly degrades
the compression performance, on the order of 1%–2% on av-
erage for the files in the Calgary corpus. A file compressed with
gzipS can be still be decompressed by the original gzip, and
therefore is backward compatible.

Finally, in the last implementation, we coded the error-re-
silient LZRS’77. The prototype implementation is written in
Python, with calls to C public-domain code that implements

LONARDI et al.: ERROR RESILIENT LZ’77 DATA COMPRESSION 1805

Fig. 6. The probability that a file of b blocks could not be recovered correctly, for increasing number of errors uniformly distributed over the blocks. Top-left:
e = 1 and b = 10, top-right: e = 1 and b = 100, lower-left: e = 2 and b = 10, lower-right: e = 2 and b = 100.

the RS encoder/decoder [14]. Based on the considerations men-
tioned in the Introduction, we initially choose and
which require, respectively, at least two and four parity bytes on
a block of data of size . We experimented with the re-
silience to errors by introducing a controlled number of errors
uniformly distributed over the blocks of the compressed file.
The graphs in Fig. 6 show the probability that the file did not
uncompress correctly for increasing numbers of errors for dif-
ferent choices of and .

For example, using over 100 blocks, LZRS’77 is able
to decompress the file correctly with 20 uniformly distributed
errors, 90% of the time. In this case, the compressed file size
would be about 25 500 bytes. Assuming that LZRS’77 loses
1%–2% on average in compression performance compared to
LZ’77, we could conclude that we could save 255–510 bytes by
using the original LZ’77. The savings should be compared to
the 400 parity bytes that are embedded in the LZRS’77 file.

III. STREAMLINED ANALYSIS

In this section, we guide the reader through the main ideas
of the proof of Theorem 1 with details explained in the last two
sections.

We recall the definition of the multiplicity matching param-
eter. The variable represents the number of longest matches
within the first symbols of the database as formally expressed
in (1). We now provide an alternative definition of via suffix
trees. A suffix tree is a trie built from suffixes of a single string.
A trie is a digital tree built over, say , strings (the reader is
referred to [15], [24], [27] for an in-depth discussion of digital
trees). A string is stored in an external node of a trie; the path
length to such a node is the shortest prefix of the string that is not
a prefix of any other strings (cf. Fig. 7). For a binary alphabet,
each branching node in a trie is a binary node. A special case
of a trie structure is a suffix trie (tree) which is a trie built over
suffixes of a single string.

Now we can redefine via suffix trees. First, build a suffix
tree from the first suffixes of . Consider the insertion
point of the th suffix. Then is exactly equal to the
number of leaves in the subtree rooted at the branching point
of the th insertion. For instance, suppose that the

th suffix starts with for some , and
some . Then, examining the first suffixes, if there
are exactly suffixes that begin with (where
where is addition modulo), and the other suffixes do

1806 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 5, MAY 2007

Fig. 7. A trie and its multiple matching parameterM after inserting string S .

not begin with , we conclude that . Fig. 7 illustrates
this scenario.

Our goal is to study in a suffix tree built from a string
generated by a binary memoryless source. Unfortunately,

the strings in a suffix tree are highly dependent on each other;
thus, a precise analysis of is quite difficult. For this reason,
we first analyze the analogous situation in a trie built over
independent strings. Specifically, in Section IV we analyze
the distribution and moments of a random variable with sim-
ilar properties, namely, , via the analysis of independent
tries, using analytical poissonization and depoissonization,
the Mellin transform, and complex analysis (cf. [27]). To
define , we consider the situation described above, but
we build a trie from independent strings from . So
we consider independent ’s (more specifically,

, where the ’s are i.i.d. random
variables). We let denote the longest prefix of such
that also has as a prefix, for some with .
Then is defined as the number of ’s (with)
that also have as a prefix, that is,

has as a prefix (6)

In order to analyze , we define the alignment
among strings as the length of the longest
common prefix of the strings. The th depth in a trie
built over strings is the length of the path from the root of
the trie to the leaf containing the th string. Note

. Thus, in the context of tries

#

That is, is the size of a subtree rooted at the branching point
of a new insertion. We analyze through generating func-
tions. Define the exponential generating functions

for complex and . A simple combinatorial argu-
ment, based on our discussion above, shows that

(7)
It follows that

We derive in Section IV asymptotics using poissonization, the
Mellin transform, and depoissonization; details are given in the
next section. These methods allow us to establish Theorem 1
with replaced by .

Once we have established the probabilistic properties of ,
we can deal with the more difficult problem, namely, the mul-
tiplicity matching parameter in a suffix tree. We show that

has a similar asymptotic distribution as . To prove this,
we compare the distribution of in suffix trees versus the dis-
tribution of in independent tries. Specifically, we prove the
following theorem.

Theorem 2: There exists such that, for some and
for all

(8)

As a consequence, there exists such that

(9)

for large .

A detailed analysis of is presented in Section V. Briefly,
our proof technique follows these lines. We let

denote the bivariate generating functions for and ,
respectively. To study these generating functions, we con-
sider the ’s defined above. Specifically, for ,
we recall from (1) that if denotes the longest prefix of

that appears as a prefix
of any , then enumerates
the number of such occurrences of . This approach to

allows us to sum over all instead of
summing over . Similarly, for , we uti-
lize (6) to determine that if denotes the longest prefix of

that appears
as a prefix of any , then is precisely
the number of such occurrences of . Therefore, to evaluate

, we can sum over all instead of summing
over the integers and .

LONARDI et al.: ERROR RESILIENT LZ’77 DATA COMPRESSION 1807

We note that the ’s in a suffix tree are highly dependent
on each other. In fact, if , then
is a substring of . This dependency
makes the derivation of the bivariate generating function

quite difficult. We overcome this hurdle by succinctly
describing the degree to which a suffix of can overlap with
itself. We accomplish this by utilizing the autocorrelation
polynomial of a word , which measures the amount of
overlap of a word with itself. The autocorrelation polynomial
is defined as (cf. [10], [17], [20])

(10)

where denotes the set of positions of satisfying
, that is, ’s prefix of length

is equal to ’s suffix of length . Via the autocorrelation
polynomial, we are able to surmount the difficulties inherent in
the overlapping suffixes. Thus, using , we obtain a suc-
cinct description of the bivariate generating function .
The autocorrelation polynomial is well understood; we utilize
several results about from [17] and [20]. In particular,
when comparing and , it is extremely useful
to note that the autocorrelation polynomial is close to
with high probability (for large), that is, for a random string

there is not much overlap.
In order to obtain information about the difference of the

above two random variables, we analyze
using residue analysis. We make a comparison of the

poles of and using Cauchy’s theorem (inte-
grating with respect to). As a result, we prove that

uniformly for as .
Then we use another application of Cauchy’s theorem (inte-
grating with respect to). Specifically, we extract the coefficient

This establishes Theorem 2.

IV. ANALYSIS OF INDEPENDENT TRIES

In this section, we prove Theorem 1 for instead of .
Our first step is poissonization. Then we utilize the Mellin trans-
form and complex analysis; thus, we obtain asymptotic descrip-
tions of the distribution and factorial moments of . Since
these results are valid for the poissonized model of the problem,
we must depoissonize our results in order to find the asymptotic
distribution and factorial moments of in the original model.

A. Poissonization

We first utilize analytical poissonization. The idea is to re-
place the fixed-size population model by a poissonized model in
which the number of strings is a Poisson random variable with
mean . We apply the Poisson transform to the exponential gen-
erating functions and , which yields

(11)

We observe that

by applying (7) to (11).

B. Mellin Transform

If is a complex-valued function which is continuous on
and is locally integrable, then the Mellin transform of

is defined as

(see [8] and [27]).
We define (so that

as). If with and if
, then

If and , then

We next invert the Mellin transform, computing

since is in the fundamental strip of .

C. Results for the Poisson Model

We restrict our attention to the case where is ra-
tional. Thus, we can write for some relatively
prime . Then, by a theorem of Jacquet and Schachinger
(see [27]), we know that the set of poles of is ex-
actly . We also observe that
has simple poles at each . Now we assume that . Then

has the same set of poles as , each of
which is a simple pole.

Using the Cauchy residue theorem [1], if and
, then

and

1808 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 5, MAY 2007

It follows that, for

where denotes the entropy and

Also

(12)

where

As an immediate corollary of (12), we see that

We note that, if is irrational and is fixed, then
and as . Thus, and

do not exhibit fluctuation when is irrational.

D. Depoissonization

Recall that in the original problem statement is a large, fixed
integer. Most of our analysis has utilized a model where is a
Poisson random variable. Therefore, to obtain results about the
problem we originally stated, it is necessary to depoissonize our
results.

Using depoissonization results of [12] and [27], we can de-
poissonize our results (cf. [28], [29]). Our conclusion is that
Theorem 1 holds if we replace by .

V. ANALYSIS OF LZS’77 VIA SUFFIX TREES

In this section, we establish Theorem 2, and as a consequence,
we immediately prove the validity of our main result (namely,
Theorem 1) for .

Consider a suffix tree built from suffixes of
, where the ’s are i.i.d. random variables

on the alphabet with and
. As before, without loss of generality, .

Let denote the th suffix of . Then is defined as the
number of ’s (with) that also have as a prefix,
that is,

has as a prefix

In Section III, we redefined as the multiplicity matching
parameter in a suffix tree built over (cf. Fig. 7). In this section,
we analyze and compare its distribution to that of . In
short, we first obtain the bivariate generating functions for
and , denoted as and , respectively. (In

particular, we rederive in such a way that a compar-
ison to is very natural.) Next, we prove that
can be analytically continued from the unit disk to a larger disk.
Afterward, we determine the poles of and .
We write ; we use Cauchy’s
theorem to prove that uniformly
for as . Then we apply Cauchy’s theorem
again to prove that

for some and .
We conclude that the distribution of the multiplicity matching

parameter is asymptotically the same in suffix trees as in
tries built over independent strings, proving Theorem 2, i.e.,
and have asymptotically the same distribution. Therefore,

also follows the logarithmic series distribution plus some
fluctuations, as claimed by Theorem 1.

A. Multiplicity Matching Parameter of Independent Tries

First we rederive the bivariate generating function for
using a different approach (the so-called “string-ruler” method)
that is well suited for suffix trees. We deal here with a trie
built over the independent strings , where

and is a
collection of i.i.d. random variables with
and . We let denote the longest
prefix of both and at least one other string for
some . We write to denote the th character
of . When , we conclude that exactly strings

have as a prefix, and the other strings do
not have as a prefix at all. Thus, the generating function for

is exactly

After simplifying, it follows immediately that

(13)

The same line of reasoning about can be applied in
the next subsection to derive the generating function
for , but the situation will be more complicated because the
occurrences of can overlap.

B. Multiplicity Matching Parameter of Suffix Trees

Now we obtain the bivariate generating function for ,
which is the multiplicity matching parameter for a suffix tree
built over the first suffixes of a string

(i.e.,). The bivariate generating

LONARDI et al.: ERROR RESILIENT LZ’77 DATA COMPRESSION 1809

function for the multiplicity matching parameter is much more
difficult to derive in the dependent (suffix tree) case than in the
independent (trie) case, because the suffixes of are depen-
dent on each other. We let denote the longest prefix of both

and at least one for some . We write
to denote the th character of ; when ,
we conclude that exactly suffixes have as a prefix,
and the other strings do not have as a prefix at
all. Thus, we are interested in finding strings with exactly
occurrences of , ended on the right by an occurrence of

, with no other occurrences of at all. This set of words
constitutes the language , where

contains exactly one occurrence

of located at the right end

contains exactly two occurrences

of located at the left and right ends

Thus, the generating function for is

(14)

Using combinatorics on words, as discussed in [10], [17], [20],
and as applied in [28], we derive a form of that we
summarize as follows.

Theorem 3: Let
denote the bivariate generating function for , the multiplicity
matching parameter of a suffix tree built over the first
suffixes of a string . Then

(15)

for and . Here

and denotes the autocorrelation polynomial for , de-
fined in (10).

Proof: The generating functions associated with and
are, respectively

and

From [20], we know , so we sim-
plify (14) to obtain

(16)

To obtain an explicit form of , we define

contains exactly two occurrences

of located at the left and right ends

and

We observe that . Thus, (16) simplifies to

(17)

So we can complete the proof of Theorem 3 by establishing
Lemma 1 below.

Lemma 1: Let denote the subset of words from
that begin with . The generating function

is

where .
Proof: We utilize a method relying on combinatorics of

correlation with borders, as discussed in [20].
We define ; also let and .

We write

We define as a generaliza-
tion of the autocorrelation polynomial, describing the overlap of

with . This yields

Next we define , where
denotes the transpose of , and where

We also define , where
denotes the identity matrix. Then

(18)

1810 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 5, MAY 2007

We know by [20] that the set enumerated by , namely,
, is exactly the set of words such that has exactly

one occurrence of and one occurrence of , at the left
and right ends, respectively. If we write (for the ap-
propriate), this happens if and only if has ex-
actly two occurrences of , at the left and right ends. Therefore,

. By also recalling , we can easily
simplify (18), thereby completing the proof of the lemma.

Lemma 1 was the last required ingredient in the proof of
Theorem 3.

C. Analytic Continuation

In order to establish (9) of Theorem 2 we need to first note
that can be analytically continued.

Theorem 4: The generating function can be analyt-
ically continued for and .

The proof requires several lemmas and observations, all
found in [28]. We merely state the main lemma underlying this
theorem.

Lemma 2: If , then there exists (depending
on) such that

for (and, as before,).

D. Singularity Analysis

We need some auxiliary results before we prove our main
result of this section, namely Theorem 2. We first determine (for

) the zeroes of and in
particular the zeroes of .

For instance, we state without proof, the following lemma.
(See [28] for a rigorous proof.)

Lemma 3: There exists an integer such that, for
fixed (with) and , there is exactly one root
of in the closed disk .

When , this lemma implies (for) that
has exactly one root in the disk . Let denote this
root, and let . Also, let denote the root of

in the closed disk .
Finally, we define

We have precisely determined the singularities of .
Next, we compare to to show that and

have asymptotically similar behaviors.

E. Comparing Suffix Trees To Tries

We shall finally prove here Theorem 2 by comparing the gen-
erating functions and . We define

Using the notation from (13) and (15), if we write

then we have proved that

We also define . We denote the con-
tribution to from a specific and as

. Then we observe that

where the path of integration is a circle about the origin with
counterclockwise orientation.

We define

By Cauchy’s theorem, we observe that the contribution to
from a specific and is exactly

(19)

To simplify this expression, note that

(20)

It follows from (19) that

(21)

LONARDI et al.: ERROR RESILIENT LZ’77 DATA COMPRESSION 1811

We next determine the contribution of the terms of
and the terms of to the

difference .

Lemma 4: The “ terms” and the “ terms”
(for) altogether have only contribution to

, i.e.,

for some .
Proof: We define

for real. So by the set of equations in (20) it suffices to prove
that

Note that

is absolutely convergent for all . Also,
is exponentially decreasing when and is

when (notice that we utilize the term in
order to make sure that when ; this pro-
vides a fundamental strip for the Mellin transform in the next
step). Therefore, its Mellin transform

is wellde fined for (see [8] and [27]). We compute

where denotes the Euler gamma function, and we note that

Also

Therefore

and

We define . Then we
compute

where the last equality is true because
when is negative, and also because
when is positive. We always have . Also, there exists

such that . Therefore, is analytic in
. Working in this strip, we choose with . Then

we have

Majorizing under the integral, we see that the first term is
since is analytic in the strip (and

). Also, the second term is . This completes
the proof of the lemma.

Now we bound the contribution to from the
terms of and the
terms of .

Lemma 5: The “ terms” and the “
terms” (for) altogether have

only contribution to , for some . More
precisely

Proof: The proof technique is the same as the one for
Lemma 4 above.

Next we note that the terms in (21) have
contribution to .

Lemma 6: The “ terms” (for) alto-
gether have only contribution to , for some .
More precisely

1812 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 5, MAY 2007

Proof: We omit the proof here; see [28] for a proof.

Finally, we consider the contribution to from small
words . Basically, we observe that has a normal dis-
tribution with mean and variance , where

denotes the entropy of the source, and is a
constant. Therefore, is extremely unlikely, and as a
result, the contribution to from words with
is very small.

Lemma 7: The terms

altogether have only contribution to .
Proof: Again, we omit the proof due to space constraints.

See [28].

All contributions to (21) have now been analyzed. We are
finally prepared to summarize our results. Combining the last
four lemmas, we see that uniformly for

, where . For ease of notation, we define .
Finally, we apply Cauchy’s theorem again. We compute

Since , it follows that

Thus, Theorem 2 holds. It follows that and have
asymptotically the same distribution, and therefore and

asymptotically have the same factorial moments. The main
result of [29] gives the asymptotic distribution and factorial
moments of . As a result, Theorem 2 follows immediately.
Therefore, follows the logarithmic series distribution,
i.e., (plus some small fluctuations if

is rational). Theorem 1 is finally proved.

VI. CONCLUDING REMARKS

From the algorithmic perspective, two immediate challenges
remain. First, we would like to make LZRS’77 on-line. The im-
plementation of LZRS’77 described here is off-line because the
blocks need to be processed backward, but it is not clear if this is
absolutely necessary. Second, we would like to be able to pro-
tect the first block while maintaining backward compatibility.
Note that we cannot embed the parity bits of the first block in
the pointers of the last, because otherwise we would introduce
a circular dependency in the process. From an analytic perspec-
tive, it would be interesting to extend Theorem 1 to Markov
sources. While it is well-known [32] that the expectation for
Markov sources is (cf. [16]), not much is known
about the distribution of under that probabilistic model. The
recent work of Fayolle and Ward [7], in which they extend the
analysis of [11] to Markov sources, is a step in that direction.

Finally, we should point out that there is a way to extend our
scheme to recover more than a constant number of redundant
bits (and potentially to strongly mixing sources along the lines
of [13]). One just has to give up the idea of always looking
for the longest match and instead agree to use “long enough”
matches. Such a scheme is still asymptotically optimal with the
(compression) bit rate and with
growing slowly with . For example, instead of using the longest
match we search for the th longest match. We expect that if
grows with in such a way that the th longest match is of
order , then grows with (possibly

?); in this case, only the constant of the asymp-
totic redundancy is affected.

REFERENCES

[1] L. V. Ahlfors, Complex Analysis. New York: McGraw-Hill, 1979.
[2] M. J. Atallah and S. Lonardi, “Augmenting LZ–77 with authentication

and integrity assurance capabilities,” Concurrency and Computation:
Practice and Experience, vol. 6, pp. 1063–1076, 2004.

[3] T. C. Bell, J. G. Cleary, and I. H. Witten, Text Compression. Engle-
wood Cliffs, NJ: Prentice-Hall, 1990.

[4] V. Castelli and L. Lastras-Montano, “Bounds on expansion in LZ’77-
like coding,” in Proc. IEEE Int. Symp. Information Theory, Chicago,
IL, Jun./Jul. 2004, p. 58.

[5] P. Flajolet, “An average-case analysis of basic parameters of the suffix
tree,” in Mathematics and Computer Science, M. Drmota, D. Gardy,
and B. Gittenberger, Eds. Vienna, Austria: Birkhäuser, 2004, pp.
217–227.

[6] E. R. Fiala and D. H. Greene, “Data compression with finite windows,”
Commun. ACM, vol. 32, no. 4, pp. 490–505, 1989.

[7] J. Fayolle and M. D. Ward, “Analysis of the average depth in a suffix
tree under a Markov model,” in Proc. Int. Conf. Analysis of Algorithms,
Barcelona, Spain, 2005, pp. 95–104.

[8] P. Flajolet, X. Gourdon, and P. Dumas, “Mellin transforms and asymp-
totics: Harmonic sums,” Theor. Comp. Sci., vol. 144, pp. 3–58, 1995.

[9] R. N. Horspool, “The effect of nongreedy parsing in Ziv-Lempel com-
pression methods,” in Proc. IEEE Data Compression Conf., Snowbird,
UT, 1995, pp. 302–311.

[10] L. Guibas and A. M. Odlyzko, “Periods in strings,” J. Combin. Theory,
vol. 30, pp. 19–43, 1981.

[11] P. Jacquet and W. Szpankowski, “Autocorrelation on words and its ap-
plications: Analysis of suffix trees by string-ruler approach,” J. Comb.
Theory, vol. A66, pp. 237–269, 1994.

[12] P. Jacquet and W. Szpankowski, “Analytical depoissonization and its
applications,” Theor. Comp. Sci., vol. 201, pp. 1–62, 1998.

[13] P. Jacquet, W. Szpankowski, and I. Apostol, “Universal predictor
based on pattern matching,” IEEE Trans. Inf. Theory, vol. 48, no. 6,
pp. 1462–1472, Jun. 2002.

[14] P. Karn, General-purpose Reed-Solomon Encoder/Decoder, v4.0 2004
[Online]. Available: http://www.ka9q.net/code/fec

[15] D. E. Knuth, Fundamental Algorithms, 3rd ed. Reading, MA: Ad-
dison-Wesley, 1997.

[16] S. Lonardi and W. Szpankowski, “Joint source-channel LZ’77 coding,”
in Proc. IEEE Data Compression Conf., Snowbird, UT, 2003, pp.
273–282.

[17] M. Lothaire, Ed., “Analytic Approach to Pattern Matching,” in Applied
Combinatorics on Words. Cambridge, U.K.: Cambridge Univ. Press,
2005, ch. 7.

[18] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: Elsevier, 1977.

[19] I. S. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” J. SIAM, vol. 8, pp. 300–304, 1960.

[20] M. Régnier and W. Szpankowski, “On pattern frequency occurrences
in a Markovian sequence,” Algorithmica, vol. 22, pp. 631–649, 1998.

[21] Y. Reznik and W. Szpankowski, “On average redundancy rate of the
Lempel-Ziv codes with k-error protocol,” Inf. Sci., vol. 135, pp. 57–70,
2001.

[22] M. Rodeh, V. R. Pratt, and S. Even, “Linear algorithm for data com-
pression via string matching,” J. Assoc. Comput. Mach., vol. 28, no. 1,
pp. 16–24, Jan. 1981.

LONARDI et al.: ERROR RESILIENT LZ’77 DATA COMPRESSION 1813

[23] K. Sayood, H. Otu, and N. Demir, “Joint source/channel coding for
variable length codes,” IEEE Trans. Commun., vol. 48, no. 5, pp.
787–794, May 2000.

[24] R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Algo-
rithms. Reading, MA: Addison-Wesley, 1996.

[25] J. Storer and J. Reif, “Error resilient optimal data compression,” SIAM
J. Comput., vol. 26, pp. 934–949, 1997.

[26] W. Szpankowski, “A generalized suffix tree and its (un)expected
asymptotic behaviors,” SIAM J. Comput., vol. 22, pp. 1176–1198,
1993.

[27] W. Szpankowski, Average Case Analysis of Algorithms on Se-
quences. New York: Wiley, 2001.

[28] M. D. Ward, “Analysis of the Multiplicity Matching Parameter in
Suffix Trees,” Ph.D. dissertation, Purdue Univ., West Lafayette, IN,
May 2005.

[29] M. D. Ward and W. Szpankowski, “Analysis of a randomized selection
algorithm motivated by the LZ’77 scheme,” in Proc. 1st Workshop on
Analytic Algorithmics and Combinatorics, New Orleans, LA, 2004, pp.
153–160.

[30] M. D. Ward and W. Szpankowski, “Analysis of the multiplicity
matching parameter in suffix trees,” in Proc. Int. Conf. Analysis of
Algorithms, Barcelona, Spain, 2005, pp. 307–322.

[31] Y. Wu, S. Lonardi, and W. Szpankowski, “Error-resilient LZW data
compression,” in IEEE Data Compression Conf., Snowbird, UT, 2006,
pp. 193–202.

[32] A. J. Wyner, “The redundancy and distribution of the phrase lengths of
the fixed-database Lempel-Ziv algorithm,” IEEE Trans. Info. Theory,
vol. 43, no. 5, pp. 1439–1465, Sept. 1997.

[33] J. Ziv and A. Lempel, “A universal algorithm for sequential data com-
pression,” IEEE Trans. Inf. Theory, vol. IT-23, no. 3, pp. 337–343, May
1977.

