
Exploring the Average Values of Boolean Functions
via Asymptotics and Experimentation

Robin Pemantle∗

Department of Mathematics
University of Pennsylvania

Philadelphia, PA 19104–6395
pemantle@math.upenn.edu

Mark Daniel Ward
Department of Mathematics
University of Pennsylvania

Philadelphia, PA 19104–6395
ward2@math.upenn.edu

Abstract
In recent years, there has been a great interest in studying
Boolean functions by studying their analogous Boolean
trees (with internal nodes labeled by Boolean gates; leaves
viewed as inputs to the Boolean function). Many of these
investigations consider Boolean functions of n variables and
m leaves. Our study is related but has a quite different
flavor.

We investigate the mean output Xn of a Boolean
function defined by a complete Boolean tree of depth n.
Each internal node of such a tree is labeled with a Boolean
gate, via 2n − 1 IID fair coin flips. The value of the input
at each leaf can be simply fixed at 1/2, so the randomness
of Xn derives only from the selection of the gates at the
internal nodes.

For each n, there are 2(2n−1) possible Boolean binary
trees to consider, so we cannot expect to obtain a complete
description of the probability distribution of Xn for large n.
Therefore, we perform a twofold investigation of the Xn,
using both asymptotics and experiments. We prove that,
with probability 1, Xn → 0 or Xn → 1. Then we directly
compute the asymptotics of the first four moments of Xn.
Writing Zn = Xn(1 − Xn), we also prove that E(Zn) and
E(Z2

n) are both Θ(1/n). Finally, we utilize C++ and a
significant amount of computation and experimentation to
obtain a more descriptive understanding of Xn for small
values of n (say, n ≤ 100).

1 Introduction.

We first outline the construction of a Boolean function
using a binary tree. We utilize complete binary trees
Tn of depth n. The tree Tn has 2n leaves and 2n − 1
internal nodes. At each of the internal nodes, we place
either an AND gate or an OR gate, with probability
1/2 each. Selection of the gates at distinct nodes is
independent, so the gates are essentially chosen by IID
fair coin flips. In other words, we uniformly select a
vector consisting of 2n − 1 AND’s and OR’s, namely
~gn ∈ {AND,OR}2n−1. By labeling the internal nodes
of a complete binary tree of depth n with this collection
~gn of 2n−1 gates, we naturally define a random Boolean
function φn(~gn) : {0, 1}2n → {0, 1}. The leaves of the
tree, say i1, i2, . . . , i2n , are considered as the inputs to

∗Supported by NSF grant DMS-0401246.

the Boolean function. The output at the root of the tree
is viewed as the output of the Boolean function. Thus
we write

φn(~gn)(i1, i2, . . . , i2n) ∈ {0, 1} .

for each (2n − 1)-tuple ~gn of gates and each 2n-tuple of
inputs i1, i2, . . . , i2n .

In this investigation, we are interested in studying
the behavior of the random variable Xn, which denotes
the mean output of φn(~gn) on 2n Boolean inputs. In
other words,

Xn :=
1

22n

∑
i1,i2,...,i2n

φn(~gn)(i1, i2, . . . , i2n) .

We observe that Xn is a random variable because the se-
lection of the 2n−1 gates in ~gn is performed at random.
Once the selection of the gates ~gn is determined, then
Xn is completely determined, because Xn is the average
of all possible 22n

selections of inputs i1, i2, . . . , i2n to
the Boolean tree described above. So the randomness
of Xn does not stem from a random choice of the inputs
i1, i2, . . . , i2n at all; Xn’s randomness only depends on
the random selection of gates at the internal nodes of
the tree. Once the gates at the nodes are chosen, then
we average over all possible inputs to the binary tree.

We will see in (2.6) below that Xn converges in
distribution to the measure (1/2)δ0 +(1/2)δ1 that gives
mass one half each to 0 and 1. Intuitively, there will
probably be a sufficient preponderance of AND gates to
drive Xn to 0 or a sufficient preponderance of OR gates
to drive Xn to 1. This is not too surprising (although
it does not occur in the related model of [7], where the
random tree of size n has leaves at distance Θ(1) from
the root). A more interesting question is how fast Xn

approaches the set {0, 1}, and what this reveals about
the structure of the random Boolean function φn(~gn).

For each selection ~gn of gates, we note that
φn(~gn) is a function with 2n inputs. If the inputs

i1, . . . , ij−1, ij+1, . . . , i2n are all fixed, then φn(~gn) is a
linear function of ij . Since ij ∈ {0, 1} for each j, then
we conclude that Xn can be computed easily, once the
gates ~gn are chosen, by simply taking 1/2 as the value of
each input ij to the Boolean function φn(~gn). In other
words, for each selection of ~gn, we have

Xn = φn(~gn)(1/2, 1/2, . . . , 1/2) ;

in this representation, it is perhaps easiest to see that
the randomness of Xn is due to the random selection of
the gates in the (2n − 1)-tuple ~gn.

An example is useful for clarification. Consider the
selection of ~g3 given below in this tree of depth 3:

∨
∨ ∧

∧ ∨ ∨ ∧
i1 i2 i3 i4 i5 i6 i7 i8

For complete trees of depth 3, we see that X3 denotes
the mean output of a Boolean random function with
gates ~g3. If the choice of ~g3 is the one given above, this
results in X3 having the value 217/256. To see this,
simply evaluate the tree:

∨
∨ ∧

∧ ∨ ∨ ∧
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Evaluating such a tree with inputs besides the familiar
{0, 1} requires a bit of explanation. The evaluation
of expressions such as i1 ∧ i2 is quite easy. This
expression, for instance, evaluates to 1 if both i1 and
i2 have the value 1; otherwise, the expression evaluates
to 0. Unfortunately, this evaluation is useful only
for i1, i2 ∈ {0, 1}. So we instead use the following
equivalent interpretation (which is quite standard). We
write

i1 ∧ i2 := i1i2
i1 ∨ i2 := 1− (1− i1)(1− i2) .(1.1)

This interpretation has the benefit that i1 and i2 can be
any real numbers; in particular, they can each be set to
the value 1/2.

The trees Tn are naturally embedded as increasing
rooted subtrees of the infinite binary tree T . All the
variables Xn may be constructed on a single probability
space (Ω,F , P) on which are defined variables {G(v) :
v ∈ V (T)} taking values AND and OR independently
with probability 1/2 each. If T ′ is any (possibly
random) rooted subtree of T , let ~gT ′ be the Boolean
function with inputs at the leaves of T ′ defined by
having the gate G(v) at each internal node v of T ′.

Let XT ′ denote the mean of T ′ if all input vectors are
equally likely. Thus φn(~gn) = ~gTn

and XTn
= Xn. Let

XT ′(v) denote the mean value of the Boolean function
computed by the subtree of T ′ rooted at v; we may omit
T ′ from the notation when it is understood. Another
consequence of linearity is that the values XT ′(v) are
determined by a recursion. That is, if v is a leaf of T ′

then XT ′(v) = 1/2 by definition, while for an internal
node v of T ′ having children w and w′,

XT ′(v) = Ψ(XT ′(w), XT ′(w′), G(v))(1.2)

where

Ψ(x, y, η) :=
{

xy if η = AND ,
1− (1− x)(1− y) if η = OR .

Evaluating a binary tree with inputs of 1/2 at each
of the leaves yields the value of Xn for each particular
selection of gates. Considering all possible selections of
gates, however, is computationally infeasible for even
small trees of small depth. For only the smallest values
of n, say n ≤ 5, can we possible hope to compute
Xn for all of the possible choices of gates. Therefore,
for medium sized values of n, say n ≤ 20, we can
readily compute the value of Xn for one particular
selection of gates for one complete tree of depth n, but
we cannot hope to compute Xn for every selection of
gates. Therefore, we simply compute Xn on a large
number of trees, but we cannot perform an exhaustive
investigation of all trees and their associated Boolean
functions. For large values of n, say n ≥ 30, it
becomes computationally intractable to even compute
the value of Xn for one particular selection of gates on a
complete binary tree of depth n. In such cases, we must
discriminately choose which gates to evaluate, because
we cannot possibly hope to evaluate them all.

In such cases, where we want to approximate the
value of Xn on a complete tree of depth n, but where
we cannot hope to evaluate all gates of the Boolean tree,
we consider a growing tree. We begin simply with the
root of a Boolean binary tree. At every stage, we select
one leaf of the tree and change it into an internal leaf,
by giving it two children and a Boolean gate. Which
leaves should be transformed into parent nodes first?
We utilize the concept of sensitivity of a leaf to select
the next leaf to transform. The leaves that are the most
sensitive, i.e., that have the largest potential effect on
the evaluation of Xn, should be first. We now formalize
this notion.

Let T ′ be a finite subtree of T and let L be a leaf
of T ′. Let ~gT ′,L+ be the Boolean function with inputs
at all leaves of T ′ except L, computed by evaluating
gT ′ with the input at L set equal to 1. Let ~gT ′,L− be
analogous but with the input at L set equal to 0. Let

XT ′,L+ and XT ′,L− denote the respective means of the
functions ~gT ′,L+ and ~gT ′,L−. Then we formally define
the sensitivity of the leaf L in T ′ as

S(L, T ′) = XT ′,L+ −XT ′,L− .

Another description of S(L, T ′) is quite useful when
computing the sensitivities of the leaves.

We label the root node of T ′ as v0. For a leaf L at
depth k in T ′, we write v0, v1, v2, . . . , vk = L to describe
the path within the tree, from the root node, to the
leaf L. For i ≥ 1, we note that vi−1 has two children,
namely, vi and one other child, which we refer to as wi.
Thus vi and wi are distinct nodes at level i with the
same parent; such nodes are frequently referred to as
siblings.

Lemma 1.1.

S(vk, T ′) =
k−1∏
i=0

(
[[G(vi) = AND]]X(wi+1)

+ [[G(vi) = OR]](1−X(wi+1))
)

(1.3)

where the Iverson notation [[A]] is 1 if event A holds and
is 0 otherwise.

Proof. Induct on T ′. When T ′ is the single vertex
v0 = vk = L then by definition gT ′,L+ ≡ 1 and
gT ′,L− ≡ 0, so S(L, T ′) = 1 which is equal to the empty
product in (1.3). If not, then assume the lemma is true
for the subtree T ′(v1):

S(L, T ′(v1)) =
k−1∏
i=1

(
[[G(vi) = AND]]X(wi+1)

+ [[G(vi) = OR]](1−X(wi+1))
)
.

By definition, S(L, T ′) is the difference of the means
of ~gT ′,L+ and ~gT ′,L−. By independence, the mean
of ~gT ′,L+ is ~gT ′(v1),L+X(w1) if G(v0) = AND, and
1−(1−~gT ′(v1),L+)(1−X(w1)) = ~gT ′(v1),L+(1−X(w1))+
X(w1) if G(v0) = OR. Subtracting the analogous
representation of the mean of ~gT ′,L− (just replace each
L+ in the previous sentence with L−), it follows that
S(L, T ′) = S(L, T ′(v1)) · ξ, where ξ = X(w1) if G(v0) =
AND and 1 − X(w1) if G(v0) = OR, completing the
induction.

We developed a C++ program to investigate the
growth of Boolean binary trees, using the sensitivity of
the leaves as a guide for which subtrees to explore first.
The program is completely adaptive, according to the
sensitivities of the leaves. At each stage of the execution
of the program, the most sensitive leaf is chosen, using
the definition of sensitivity described above. If several

leaves have the same sensitivity, the program selects one
of the candidate leaves uniformly at random; sometimes
the candidate leaves are at different levels, so this is an
important subtlety in the implementation of the pro-
gram. Once a leaf L is selected to be updated, we con-
sider the path v0, v1, . . . , vk = L from the root of the tree
to the leaf. Only the X-values X(v0), X(v1), . . . , X(vk)
must be updated; this is extremely efficient in terms
of the computation required, because at most n nodes
are found on the path from the root to the leaf. The
sensitivities of every leaf in the tree must be updated
afterwards. We note that if v′0, v

′
1, . . . , v

′
k = L′ denotes

another leaf, then the sensitivity of L′ is exactly

k−1∏
i=0

(
[[G(v′i) = AND]]X(w′i+1)

+ [[G(v′i) = OR]](1−X(w′i+1))
)
.(1.4)

A subtlety here is the observation that only
X(w0), X(w1), . . . , X(wj) were changed at this stage in
the growth of the tree. For some value of j (which is,
with high probability, quite small), we note that L and
L′ have common ancestors vi = v′i for all i ≤ j, but
vi 6= v′i for all i > j. Thus wi = w′i for all i ≤ j, but
wi 6= w′i for all i > j. Therefore, only the X-values
X(w′1), . . . , X(w′j) need to be updated in the sensitiv-
ity of L′, as written in (1.4). In other words, the only
X(w′i)-values that need updating are those for which
vi = v′i is a common ancestor of both L and L′.

We wrote several C++ programs to perform the
computations in this project. Some sample output from
the programs is presented graphically at the end of this
paper.

We have computed millions and millions of values of
Xn for various values of n. For instance, when n = 15,
we are able to compute approximately 30 values of Xn

per second on a 1.42 GHz Power Macintosh G4 machine.
We have built a large database that archives all of the
output from these investigations. It has grown so large
that it is unwieldy to distribute all of it publicly on the
Internet, but we summarize some of the results of our
computations at the end of this report.

2 Main results

We were inspired to pursue an analysis of Xn because of
Gardy and Woods’ intriguing study [7], in which various
measures on Boolean functions are analyzed. Gardy and
Woods consider trees chosen uniformly among all sub-
binary trees with n leaves; they also place randomly
assigned logical gates at the internal nodes. We note
that a uniformly chosen tree with n leaves is stringy.
The typical random function produced in this way is
therefore dominated by the Θ(1) many inputs at leaves

of distance Θ(1) from the root. Their model is natural
for some purposes, but we are interested in considering
the model in which, as n → ∞, the distance from the
root to the boundary goes to infinity. For this reason, we
consider the simplest such model, namely, the complete
binary tree. The typical behavior of a random Boolean
function produced by a complete binary tree turns out
to be interesting but in some ways elusive.

Besides the analysis contained in [7], we note that
many attributes of Boolean functions, binary Boolean
trees, and tree recurrences have been analyzed recently.
For instance, consider [1], [2], [3], [6], [8], [10], [11], [12],
and [13]. These papers constitute a starting point from
which readers can delve further into the literature.

We recall that Xn is the mean output of a Boolean
function defined by a complete Boolean tree of depth n.
In this report, we prove the following facts about Xn.

Theorem 2.1. The sequence {Xn} is a Martingale.
With probability 1, the limit limn→Xn exists and is
either 0 or 1. The moments of Xn may all be computed
recursively. In particular, the first four moments of Xn

are

E(Xn) =
1
2

E(X2
n) =

1
2
− 1

n
+ O

(
log n

n2

)
E(X3

n) =
1
2
− 3

2n
+ O

(
log n

n2

)
E(X4

n) =
1
2

+
α− 2

n
+ O

(
log n

n2

)
(2.5)

where α =
√

7−1
2 . To understand the rate at which a

variable with symmetric distribution on [0, 1] converges
to {0, 1}, it is natural to analyze the moments of Zn :=
Xn(1−Xn). We have

E(Zn) =
1

n + O(log n)
,(2.6)

E(Z2
n) ∼ α

n
.(2.7)

It follows that, for some a > 0, P (Zn ≥ a) = Θ(1/n).

Left open is whether the rest of the time Zn is typically
of order 1/n or of some smaller order.

Just as the right 1/n-tail of Zn is larger than one
might initially expect, it is also not hard to show that
the left 1/n-tail of Zn is quite small.

Proposition 2.1. There are c, c′ > 0 such that
P (Zn < exp(−cn2)) > c′/n.

We believe in fact that the distribution of log Zn

is spread over an interval of increasing size as n → ∞.

Perhaps, for instance,
√

log Zn/n has a nondegenerate
distributional limit.

We point out that there are issues in effective
simulation that are bound up with theoretical analyses
of the problem. In particular, exact simulation of Zn

(the study of Zn and Xn is basically interchangeable)
requires a time that is exponential in n. Thus, for
example, we cannot even obtain one sample of Z100

(just one sample of Z100 requires the generation of
2100 − 1 Boolean gates). We can only hope to obtain
exact samples of Zn for medium-sized n. For larger n,
say n ≥ 30, our remedy is an extensive experimental
analysis of Zn by repeatedly approximating Zn; we do
this by exploring only nodes of the tree that one expects
to have high impact on the value of Zn. At each stage
in the growth of the tree, there is a well defined most
sensitive remaining node (there may be ties); therefore,
one may define a greedy search algorithm which always
looks next at this node. Revealing the gate will reduce
the variance by the most. If one can then compute how
close one is to Xn then one will know how far to go
in order to simulate a pick from Xn with the desired
precision. If, further, one can analyze the growth of the
exploration tree, then one will know how long it takes to
simulate Xn, and this will have implications directly on
the distribution of Xn. For example, if Xn is typically
well approximated by a tree of depth m < n, then the
distributions of Xn and Xm are close and, if m = o(n),
this precludes a limit law with n in the denominator.

Ample data generated by our various C++ pro-
grams for studying the behavior of Xn when n is small
(say, n ≤ 100) can be obtained from the authors. Our
files of data are too large to distribute on the internet
at present (we have hundreds of megabytes of files, con-
taining millions of samples of various Xn).

At the present time, it suffices to present a few
graphs of sample data concerning Xn at the end of the
paper. In particular, we give plots of values related to
possible limit laws for X15 and X20, using numerical
data from millions of samples of X15 and X20.

3 Analysis and Proofs.

We establish the fact that {Xn} is a martingale. We
also derive the first four moments of Xn. Using a similar
methodology, one can set up similar recurrences and use
analogous arguments to derive any of the moments of
Xn.

By a sampling scheme we mean a rule for producing
a sequence of vertices y1, y2, . . . such that for each k
the vertices {y1, . . . , yk} span a rooted subtree Wk of
T and each yk+1 is a function of G(y1), . . . , G(yk).
Associated with each such rule is the σ-field F (k) :=
σ(G(y1), . . . , G(yk)) of the first k gates one looks at.

Lemma 3.1. The sequence {XWk
} is a martingale with

respect to {F (k)}. In particular, it follows from the
breadth-first sampling scheme that the sequence {Xn}
is a martingale with respect to the filtration {Fn} :=
σ(G(v) : v is an internal node of Tn).

Proof. To see that {XWk
} is a martingale, observe that,

conditional on F (k), the vertex yk+1 is known and its
output in the tree Wk+1 has mean 1/2. By linearity,
E(XWk+1 |F (k)) is the mean output at the root of Wk,
with the input at yk+1 set to 1/2; however, the mean
may be computed by setting all the inputs to 1/2, so
this is equal to XWk

.

Corollary 3.1. With probability 1, limn→∞Xn ex-
ists.

Proof. Since 0 < Xn < 1 for each n, we have E(|Xn|) ≤
1 for all n. By Lemma 3.1, we know that {Xn} is a
martingale. Thus, the corollary follows immediately by
the Martingale Convergence Theorem (see [4], [5]).

We now evaluate moments of Xn.

Lemma 3.2.

E(Xn) = 1/2 .

Proof. Reversing each gate and each input reverses the
output but preserves the measure on functions of ~gn.
Thus 1−Xn and Xn have the same distribution.

We use the following Lemma to aid in the proof of
Theorem 3.2. If we define Zn = Xn(1 − Xn), then we
make the following observations.

Lemma 3.3.

1. E(X2
n) increases to the limiting value of 1/2.

2. The rate of convergence is given by

E(X2
n) =

1
2
− 1

n
+ O

(
log n

n2

)
.

3. Asymptotics for Zn are given by

E(Zn) := E(Xn(1−Xn)) =
1
n

+ O

(
log n

n2

)
.

Proof. That E(X2
n) increases follows from {Xn} being a

martingale. To find the limit, we establish a recurrence
for E(X2

n). When computing Xn+1, we let X ′
n :=

XTn+1(v1) and X ′′
n := XTn+1(w1) denote the outputs

of the Boolean functions for the left and right subtrees
of the root node; note that X ′

n and X ′′
n are independent,

and each is distributed as Xn. Taking expectations
in (1.2), we have

E(X2
n+1) =

1
2
E((X ′

nX ′′
n)2)

+
1
2
E((1− (1−X ′

n)(1−X ′′
n))2) .(3.8)

The variables X ′
n, X ′′

n , 1−X ′
n, and 1−X ′′

n all have the
same distribution. Together with independence of X ′

n

and X ′′
n this gives

E(X2
n+1) = E(X2

n)2 +
1
4

.(3.9)

Since E(X2
n) increases and is bounded above by 1, then

a limiting value exists; we take a limit on both sides of
(3.9) to obtain

lim
n→∞

E(X2
n+1) = (lim

n→∞
E(X2

n))2 + 1/4 .(3.10)

Thus lim
n→∞

E(X2
n) = 1/2, which completes the proof of

the first statement of the Lemma.
Now we observe

E(Zn) = E(Xn(1−Xn))
= E(Xn)− E(X2

n)

=
1
2
− E(X2

n) .(3.11)

Thus E(X2
n) = 1

2 − E(Zn). From (3.9), it follows
immediately that

1
2
− E(Zn+1) =

(
1
2
− E(Zn)

)2

+ 1/4 ;

after simplifying, we obtain

E(Zn+1) = E(Zn)− E(Zn)2 .

For ease of notation, we write an = E(Zn). So we have
an+1 = an − a2

n. Then we write bn = 1/an, and we
compute

bn+1 =
1

an − a2
n

=
b2
n

bn − 1

= bn + 1 +
1

bn − 1
.(3.12)

Iterating this yields

bn+1 = b1 + n +
n∑

k=1

1
bk − 1

.(3.13)

From (3.13), we observe that bn+1 > n, so bk > k−1 for
all k. Thus, the summation in (3.13) can be bounded
by writing

n∑
k=1

1
bk − 1

=
1

b1 − 1
+

1
b2 − 1

+
n∑

k=3

1
bk − 1

≤ 1
16
3 − 1

+
1

256
39 − 1

+
n∑

k=3

1
(k − 1)− 1

= O(log n) .

Returning to (3.13), we conclude that

bn = n + O(log n) .

Again using (3.13), it follows that

bn+1 = b1 + n +
n∑

k=1

1
n + O(log n)

= bn = n + log n + O(1)

and we conclude that

E(Zn) = an =
1
n

+ O

(
log n

n2

)
.

This proves the final sentence of the lemma. All that
remains to show is E(X2

n) = 1/2− 1/n + O
(

log n
n2

)
, but

this follows immediately from E(X2
n) = 1/2− E(Zn).

We recall from Corollary 3.1 that limn→∞Xn exists
with probability 1. So we define X := limn→∞Xn.
Using Lemma 3.3, we have the following result about
the limiting behavior of Xn.

Corollary 3.2.

P (X = 0) = P (X = 1) =
1
2

.

Proof. By bounded convergence, we have E(X2) =
limn→∞E(X2

n) = 1/2. Since X ∈ [0, 1] is symmetric
around 1/2, this implies X = 0 or 1 with probability
1/2 each.

The next two lemmas compute the remaining mo-
ments in Theorem 2.1.

Lemma 3.4. The third moment of Xn is given by

E(X3
n) =

1
2
− 3

2n
+ O

(
log n

n2

)
.

Proof. As in Lemma 3.3, we establish a recurrence for
E(X3

n). When computing Xn+1, we again write X ′
n and

X ′′
n to denote the output of the Boolean functions for

the left and right subtrees of the root node, which are
independent. Then we compute

E(X3
n+1) =

1
2
E((X ′

nX ′′
n)3)

+
1
2
E((1− (1−X ′

n)(1−X ′′
n))3) .(3.14)

We once again use the fact that X ′
n, X ′′

n , 1 − X ′
n, and

1−X ′′
n share a common distribution. Thus,

E(X3
n+1) =

1
2
E(X3

n)2 +
1
2
− 3

2
E(Xn)2

+
3
2
E(X2

n)2 − 1
2
E(X3

n)2

=
3
2
E(X2

n)2 +
1
8

.(3.15)

Recall from (3.9) that

E(X2
n+1) = E(X2

n)2 +
1
4

.(3.16)

Plugging this result into (3.15) yields

E(X3
n+1) =

3
2

(
E(X2

n+1)−
1
4

)
+

1
8

=
3
2
E(X2

n+1)−
1
4

(3.17)

and by Lemma 3.3, we conclude that

E(X3
n) =

1
8
− 3

4n
+ O

(
log n

n2

)
.(3.18)

This establishes the lemma.

Using the lemmas above, we now establish the
following asymptotics for E(Z2

n).

Lemma 3.5. The second moment of Z2
n decays as

E(Z2
n) ∼ α

n where α =
√

7−1
2 ≈ .82.

Proof. As in several of the above lemmas, we observe
that

E(X4
n+1) =

1
2
E((X ′

nX ′′
n)4)

+
1
2
E((1− (1−X ′

n)(1−X ′′
n))4) .(3.19)

Simplifying via the same method as in the lemmas and
using the results established in Lemmas 3.3 and 3.4, it
follows that

E(X4
n+1) = E(X4

n)2 − 3
2
E(X2

n)2 +
3
2
E(X2

n)− 1
8

.

(3.20)

For ease of notation, we define

hn :=
1
2
− E(X4

n)(3.21)

and
dn :=

1
2
− E(X2

n) .(3.22)

It follows from (3.20) that

hn = hn−1 − h2
n−1 +

3
2
d2

n .(3.23)

The proof of the lemma is finished by the following
identity.

Lemma 3.6. If dn ∼ 1/n and hn are positive numbers
satisfying (3.23) then hn ∼ α/n for α = (

√
7− 1)/2.

Proof. Let un = nhn. The recursion (3.23) becomes

un =
n

n− 1
un−1 −

n

(n− 1)2
u2

n−1 +
3/2 + o(1)

n

= un−1 +

[
un−1 − u2

n−1 + 3
2 + O

(un−1
n

)]
n− 1

.

One may easily verify that un/n → 0, which implies

un − un−1 = n−1[f(un−1) + o(1)] .(3.24)

Checking that x − x2 + 3/2 is positive on (0, α) and
negative on (α,∞), we then see that un+1 > un when
un ∈ (0, α − o(1)) and un+1 < un when un ∈ (α +
o(1),∞), so un converges. Convergence to something
other than α is not possible because in that case
eventually |f(un)| > ε and divergence of the harmonic
sum in (3.24) would contradict convergence of un.

We complete the moment computations with:

Corollary 3.3.

E(X4
n) =

1
2

+
α− 2

n
+ O

(
log n

n2

)
where α =

√
7−1
2 .

Proof. We note that E(X4
n) = E(Z2

n) − E(X2
n) +

2E(X3
n), and then the corollary follows immediately

from Lemmas 3.3, 3.4, and 3.5.

Finally, to derive the last statement in Theorem 2.1,
observe that greatest possible second moment for a
random variable in [0, a] with mean µ is aµ. Thus,

α + o(1)
n

= E(Z2
n)

= E(Z2
n)[[Zn ≥ a]] + E(Zn[[Zn < a]])2

≤ (supn Z2
n)P (Zn ≥ a) + aEZn[[Zn < a]]

≤ 1
16

P (Zn ≥ a) +
a + o(1)

n
,

and hence

P (Zn > a) ≥ 16
α− a + o(1)

n
.

This finishes the proof of Theorem 2.1 for any value
a < α.

Now we prove Proposition 2.1, namely, there are
c, c′ > 0 such that P (Zn < exp(−cn2)) > c′/n.

Proof of Proposition 2.1. Let T ′ ⊆ T be the subtree
whose vertices are the vertices of T that can be reached
from the root by a path not containing any OR gate
(if there is an OR gate at the root then T ′ is empty).
Denote the size and depth of T ′ by |T ′| and d(T ′),
respectively. The event An that d(T ′) < n and |T ′| > n2

is well known to have probability asymptotic to Cn−1

for some constant C > 0; this follows, for example,
from the convergence of n times the law of the path
that circumnavigates the tree to Brownian excursion
measure [9].

Let F = σ(T ′) be the information contained in the
value of the random tree T ′. Let Sn be the set of vertices
in Tn adjacent to T ′ but not in T ′. Since a subtree of T
with k vertices has k + 1 neighbors, we see that on An,
the set Sn satisfies s := |Sn| > n2. Conditional on F ,
the s subtrees from vertices in Sn are independent and
distributed exactly as the gates of T except that the root
is always an OR. Consequently, on An, the output at
any vertex of Sn has conditional mean 3/4 given F , since
all we know about the gates of this subtree is that there
is an OR at the root. Furthermore, E(Xn | F) = (3/4)s

on the event An, since the root outputs a 1 if and only
if all vertices in Sn output a 1. The result now follows
from P (An) ∼ Cn−1 and E(Xn | F) < (3/4)n2

on An,
with any c < log(4/3) and c′ < C.

4 Further Discussion and Experimental Data

The purpose of the sensitivity-first sampling scheme is
to sample approximately from the distribution of Xn

by sampling the variable Yk := XWk
in the sampling

scheme y1, y2, . . . which always chooses the leaf of great-
est sensitivity. More precisely, when trying to sample
from Xn, we partition the leaves of Wk into Ak ∪ Bk

where Ak is the set of leaves of Wk at level n and Bk is
the set of leaves of Wk at levels less than n; our sampling
scheme then designates yk+1 to maximize S(yk+1,Wk)
over yk+1 ∈ Bk. This sampling scheme will halt when
k = 2n and produce Yk = Xn, but our hope is that Yk

is close to Xn for k much less than n, for example a
polynomial in log n.

We cannot prove this, though we have some shaky
evidence. The reason the evidence is shaky is that we
have tabulated how great k must be in order to satisfy

criteria appearing to give Yk near to Xn but cannot
prove that Yk is actually close to Xn. We conclude the
theoretical discussion with some results giving bounds
on the distance from Yk to Xn.

We will be applying these bounds knowing F (k) but
not Fn, so we want bounds measurable with respect to
F (k). A crude upper bound is:

Proposition 4.1.

E(|Yk −Xn| | F (k)) ≤
∑

y∈Bk

S(y, Tk) .(4.25)

Proof. Let X∗
n be the (random) mean of the random

Boolean function obtained from ~gn by fixing inputs (at
random) at vertices in Bk. Then Xn is a conditional
expectation of X∗

n so, conditional on F (k), we know that
E(|Xn − Yk| | F (k)) ≤ E(|X∗

n − Yk| | F (k)).
For y ∈ Bk, fixing the inputs at leaves of Tn below

y as independent fair coin flips produces an output
at y; for purposes of computing X∗

n, we may as well
simply fix that output, which will be a 0 half the time
and a 1 half the time, independent of nodes not in
T (y). Thus another way to compute X∗

n is to fix inputs
(independent fair coin flips) at all the leaves of Tk not
already at level n. Enumerate these as z1, . . . , zr, and let
Mj denote the mean of the Boolean function obtained
from ~gTk

by fixing inputs at z1, . . . , zk. The triangle
inequality gives

E(|X∗
n − Yk| | F (k)) ≤

r∑
j=1

E(|Mj −Mj−1| | F (k))

which is equal to
∑r

j=1(1/2)S(zj , Tk) because the sen-
sitivity at zj as z1, . . . , zj−1 is revealed is itself a mar-
tingale. This proves (4.25).

Based on this, a reasonable time to halt the algo-
rithm and output Yk would be when the right-hand side
of (4.25) is much smaller than the same sum over leaves
of Tk that are at level n. Unfortunately, based on our
preliminary experiments growing trees with C++ ac-
cording to the sensitivities of the leaves, this does not
seem to happen until too much of Tn is explored to be
efficient. However, the L1 sum in (4.25) is probably an
overestimate of how much Yk will change on the way
to evaluating Xn. In particular, since {Yk} is a mar-
tingale, one might expect that summing in L2 yields
sharper estimates.

The incremental variance of the martingale {Yk} is
given by the squared sensitivities:

E((Yk+1 − Yk)2 | F (k)) = (1/4)S(yn+1, Tk)2 .

We would like to conclude that the L2 difference be-
tween Yk and Xn is given by the sum of S(y, Tk)2 over

leaves y of Tk that are not already at level n, but the
problem is that, with zj ,Wj as above, it is no longer true
that E(Wj+1−Wj)2 = (1/4)S(zj , Tk)2. This is because
the sensitivity at zj is a submartingale as the gates at
z1, . . . , zj−1 are revealed. We conjecture, however, that

E((Yk −Xn)2 | F (k)) ≤ C
∑

y

S(y, Tk)2

for some constant C.
Since we cannot rigorously prove a fast stopping

rule that yields reasonable sample values of Xn, we have
reliable samples of Xn only for n ≤ 20. Various graphs
concerning the distribution of X15 and X20 are given
below.

If we write p = P (X15 ≤ x), then the following
chart gives the values of p and the analogous x value.
The data is based upon four million samples of X15.

We also give similar data for X20, based on 800,000
samples.

We emphasize that each sample of X15 and X20 was
produced by computing a complete Boolean binary tree
of depth 15 and 20, respectively.

When simulating Xn for larger n, such as 100,
we used an interactive C++ program that allows the
user to sample values from X100, for instance, with
interactions concerning when to stop the simulation.
The C++ program is trained to stop the simulation
itself if it detects that the sensitivities of the leaf
nodes, collectively, are sufficiently small. The stopping
condition is easily modified by the user, so we continue
to experiment with a variety of stopping conditions.

The C++ program has several other features. For
instance, it lets us visualize the data by examining the
profile as the tree grows. The evolution of the profile as
the most sensitive nodes are selected within the tree is
an intriguing phenomenon. Besides further studying the
profile, we also plan to continue investigating stopping
criteria for the growth of large Boolean binary tree when
simulating Xn for large n, for example, n = 100.

All of the graphs below are for the pairs (x, y) where
y = P (X15 ≤ x) (based on 4,000,000 samples of X15)
and y = P (X20 ≤ x) (based on 800,000 samples of X20).

We rescale the x-axis in a variety of ways.

Acknowledgments

We appreciate the input of Svante Janson, who simul-
taneously derived several of the observations presented
here. We also acknowledge Bob Sedgewick’s insightful
advice about using randomization in the implementa-
tion of data structures (Finding Paths in Graphs, A of
A 2005).

References

[1] C. Banderier, M. Bousquet-Mélou, P. Flajolet
A. Denise, D. Gardy, and D. Gouyou-Beauchamps.
Generating functions for generating trees. Discrete
Mathematics, 246:29–55, 2002.

[2] H. Buhrman and R. de Wolf. Complexity measures
and decision tree complexity: a survey. Theoretical
Computer Science, 288:21–43, 2002.

[3] B. Chauvin, P. Flajolet, D. Gardy, and B. Gitten-
berger. And/or tree revisited. Combinatorics, Prob-
ability and Computing, 13(4–5):475–497, 2004.

[4] R. Durrett. Probability: Theory and Examples.
Duxbury, Belmont, CA, 3rd edition, 2005.

[5] W. Feller. An Introduction to Probability Theory and
Its Applications. Wiley, New York, 1968, 1971.

[6] J. Fill, P. Flajolet, and N. Kapur. Singularity analysis,
hadamard products, and tree recurrences. Journal of
Computational and Applied Mathematics, 174:271–313,
February 2005.

[7] D. Gardy and A. Woods. And/or tree probabilities of
boolean functions. In Conrado Mart́ınez, editor, 2005
International Conference on Analysis of Algorithms,
volume AD of DMTCS Proceedings, pages 139–146.
Discrete Mathematics and Theoretical Computer Sci-
ence, 2005.

[8] H. Lefmann and P. Savický. Some typical properties
of large and/or Boolean formulas. Random Structures
and Algorithms, 10:337–351, 1997.

[9] J. Neveu and J. Pitman. The branching processes in
a brownian excursion. In Séminaire de Probabilités,
XXIII, volume 1372 of Lecture Notes in Mathematics,
pages 248–257. Springer-Verlag, New York, 1989.

[10] P. Savický. Bent functions and random Boolean
formulas. Discrete Mathematics, 147:211–237, 1995.

[11] P. Savický. Complexity and probability of some
Boolean formulas. Combinatorics, Probability and
Computing, 7(4):451–463, 1998.

[12] P. Savický and A. Woods. The number of Boolean
functions computed by formulas of a given size.
Random Structures and Algorithms, 13(3–4):349–382,
1998.

[13] I. Wegener. The complexity of Boolean functions.
Teubner, Stuttgart, 1987.

