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In a suffix tree, the multiplicity matching parameter (MMPJ},, is the number of leaves in the subtree rooted at

the branching point of thén + 1)st insertion. Equivalently, the MMP is the number of pointers into the database

in the Lempel-Ziv '77 data compression algorithm. We prove that the MMP asymptotically follows the logarithmic
series distribution plus some fluctuations. In the proof we compare the distribution of the MMP in suffix trees to its
distribution in tries built over independent strings. Our results are derived by both probabilistic and analytic techniques
of the analysis of algorithms. In particular, we utilize combinatorics on words, bivariate generating functions, pattern
matching, recurrence relations, analytical poissonization and depoissonization, the Mellin transform, and complex
analysis.

Keywords: suffix trees, combinatorics on words, pattern matching, autocorrelation polynomial, complex asymptotics,
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1 Introduction

When transmitting data, the goal sburce coding (data compressios)to represent the source with a
minimum of symbols. On the other hand, the goatishnnel coding (error correctiori} to represent the
source with a minimum of error probability in decoding. These goals are obviously in conflict. Tradition-
ally, additional symbols are transmitted when performing error correction.

In Lonardi and Szpankowski (2003), an algorithm for joint data compression and error correction is
presented; the compression performance is not degraded because the algorithm requires no extra symbols
for error correction. In this scheme, a Reed-Solomon error-correcting code is embedded into the Lempel-
Ziv '77 data compression algorithm (see Ziv and Lempel (1977)). Lonardi and Szpankowski utilize the
fact that the LZ'77 adaptive data compression algorithm is unable to remove all redundancy from the
source. Our goal here is to precisely determine the number of redundant bits that are available to be
utilized in the aforementioned scheme.

We recall the basic operation of the LZ'77 data compression algorithm. Whaits of the source
have already been compressed, the LZ'77 encoder finds the longest prefix of the uncompressed data that
also appears in the database (namely, the compressed portion of the data). The encoder performs the
compression by storing a pointer into the database (and also the length of this prefix, as well as the next
character of the source). Often, this longest prefix appears more than once in the database. Each of the
database entries aegually eligiblefor use by the encoder; thuany of the analogous pointeisto the
database is suitable. In practice, the choice of pointer among these candidates has no significance. On the
other hand, by judiciously selecting the pointer, some error correction can be performed. For instance, if
two pointers are available, the encoder could easily perform a parity check by choosing the first pointer for
“0” and the second pointer for “1”. Lonardi and Szpankowski’'s scheme for performing error correction is
very elaborate. We refer the reader to their paper for more details.

We let M,, denote theaumber of pointers into the databaatenn bits have already been compressed
(as described above). Throughout this paper, we are primarily interested in precisely determining the
asymptotics ofMf,,. A thorough analysis of\7,, yields a characterization of the degree to which error
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Fig. 1: Finding M. in a trie.

correction can be performed in the scheme discussed above. We ndtleghdl/,, | bits are available to
be used for correcting errors.

Tries, especially suffix trees, provide a natural way to stuly We work here with strings of characters
drawn independently from the binary alphabet= {0,1}. We letp denote the probability of “0” and
q = 1 — p denotes the probability of “1”; without loss of generality, we assumedhat throughout the
discussion.

We first recall the definition of a binary trie built over a 8&bf n strings. The construction is recursive.

If |Y| = 0, then the trie is empty. IfY| = 1, thentrie()) is a single node. Finally, ify| > 1, then) is
partitioned into two subset3), and), such that a string is i, if its first symbol is 0, and a string is in

Y, ifits first symbol is 1. Thenrie()y) andtrie(), ) are each constructed in the same way, except that
the splitting of sets at theth step is based on thgh symbol of the string. This completes the definition
of a binary trie.

Now we briefly recall the construction of a binary suffix tree built over a sthihg: X; X5 X3.... The
word X = X; X, 1 X, ... is theith suffix of X, which begins at théth position ofX'. Then a binary
suffix tree is precisely a binary trie built over the firssuffixes of X, namelyX ), x® . x ™),

In a suffix tree,M,, is exactly the number of leaves in the subtree rooted at the branching point of the
(n + 1)stinsertion (cf. Figure 1). The strings in a suffix tree are highly dependent on each other, which
apparently makes a precise analysis\gf quite difficult; therefore, we also consider the analogous (but
simpler) situation in a trie built ovendependenstrings; namely, we study/!, which is the number of
leaves in the subtree rooted at the branching point of(the 1)st insertion in a trie built oven + 1
independenbinary strings. For instance, in Figure 1, we have- 4 and M. = 2 because there are two
leaves (namelyS; and.S,) in the subtree rooted at the branching point of the 5th insertion.

We are primarily concerned with comparing the distribution\6f (a parameter of suffix trees) to the
distribution of M (a parameter of tries built over independent strings). Our approach to the proof begins
with the observation that a variety of parameters have the same asymptotic behavior regardless of whether
they correspond to suffix trees or to tries built over independent strings. This was observed in Szpankowski
(1993) and then made precise in Jacquet and Szpankowski (1994), where the typical depth in a suffix tree
is proven to be asymptotically the same as the typical depth in a trie built over independent strings when
the underlying source is i.i.d. An extension of such results to an underlying Markovian model is presented
in Fayolle and Ward (2005).

The limiting distribution of several trie parameters is given in Jacquet d@gphigr (1986) and Jacquet
and Regnier (1987). More results about trie parameters are found in Kirschenhofer and Prodinger (1988).
The variance of the external path in a symmetric trie is given in Kirschenhofer et al. (1989). The depth of
a digital trie with an underlying Markovian dependency is analyzed in Jacquet and Szpankowski (1991).
Many results about a variety of tree structures are collected in Szpankowski (2001). Average-case studies
of several parameters of suffix trees are found in Fayolle (2004) and Szpankowski (1993).

We briefly summarize the methodology of our proof. Our goal is to compare the distributidp ¢the
multiplicity matching parameter of a suffix tree) to the distributioméf (the MMP of a trie built over
independent strings). Our proof that these two parameters have the same asymptotic distribution consists
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of several steps. We first derive bivariate generating functiondffprand M, denoted as/(z, v) and

M (z,u), respectively. We noted above that a suffix tree is built over the suffikés X ... x®)

of a stringX. These suffixes are highly dependent on each other. Therefore, in deriving the bivariate
generating functionV/ (z,«), an interesting obstacle arises: We need to determine the degree to which
a suffix of X can overlap with itself. Fortunately, the autocorrelation polynorfiig{z) of a word w
measures the amount of overlap of a werdith itself. The autocorrelation polynomial was introduced in
Guibas and Odlyzko (1981) and was utilized extensivelyégiiter and Szpankowski (1998) and Lothaire

(2005). The autocorrelation polynomial is defined as

Sw(z)= > P(wyy,)z"" )

keP(w)

wherem = |w| and whereéP (w) denotes the set of positioh®f w satisfyingw; ... wi = Wy k41 - - Wi,

that is,w’s prefix of lengthk is equal tow’s suffix of lengthk. Using the autocorrelation polynomial,

we can overcome the difficulties inherent in the fact that suffixes of a Wowlerlap with each other.

By utilizing S,,(z), we are able to obtain a succinct way of describing the bivariate generating function
M (z,u). Fortunately, the autocorrelation polynomial is well-understood. Note that the autocorrelation
polynomial S,,(z) has aP (wj,,)z™* term if and only ifw has an overlap with itself of length. All
wordsw overlap with themselves trivially, so all autocorrelation polynomials have a constant term (i.e.,
zm~™ = 29 = 1 term). On the other hand, with high probability,has very few large nontrivial over-
laps with itself. Therefore, with high probability, all nontrivial overlapswofnith itself are small; such
overlaps correspond to high-degree termspfz).

In order to comparé/(z,u) and M (z,u), we utilize complex analysis. Specifically, we take advan-
tage of Cauchy’s theorem, which allows us to analyze the poles of the generating furddtiens) and
M (z,u) in order to obtain precise information about the distributionsffand/ .. During this residue
analysis, it is necessary that the generating functiodfgris analytically continued from the unit disk to
a larger disk.

Our ultimate conclusion is that the distribution of the multiplicity matching paramftgis asymp-
totically the same in suffix trees and independent tries, A&,,and M have asymptotically the same
distribution.

The asymptotics for the distribution and factorial momenta/dfwere given in Ward and Szpankowski
(2004). Specifically)M ! asymptotically follows the logarithmic series distribution (plus some fluctuations
whenln p/ In ¢ is rational). Since we prove here that, and M have asymptotically the same distribu-
tion, then as a consequence, we seeitiatlso asymptotically follows the logarithmic series distribution.
One striking property of this distribution is the high concentration around the mean. We sggthdtis
asymptotically% (whereh denotes the entropy of the source) and dl§pis highly concentrated around
this average value; this property of,, is very desirable for the error correction scheme described in
Lonardi and Szpankowski (2003).

This paper is a concise version of the first author’s Ph.D. thesis; see Ward (2005).

2 Main Results

We consider the string = X1 X> X3 ..., where theX;’s are i.i.d. random variables o# := {0, 1} with
P(X; =0) = pandP(X; = 1) = ¢. (Without loss of generality, we assume throughout the discussion
thatg < p.) Let X(* denote theth suffix of X. In other words X = X, X;,1X;.5.... Consider the
longestprefix w of X (1) such thatX (V) also hasw as a prefix, for someéwith 1 < i < n. Thenl,, is
defined as the number &f()’s (with 1 < i < n) that havew as a prefix. So

M, =#{1<i<n| X% =X;X;,1X,,5... hasw as a prefi} . (2)

An alternate definition of\/,, is available viasuffix trees First, consider a suffix tree built from the first

n + 1 suffixes of X. Next, consider thénsertion pointof the (n + 1)st suffix. Then)M,, is exactly the
number of leavef the subtree rooted at the branching point of thet 1)st insertion. For instance,
suppose that thg: + 1)st suffix starts withus for somew € A* andg € A. Then, examining the first
suffixes, if there are exactly suffixes that begin witwa (Wwherea = 1 — 3, i.e., {«, 5} = {0, 1}), and

the othem — k suffixes do not begin witlw, we conclude thad/,, = k.

Unfortunately, the strings in a suffix tree are highly dependent on each other; thus, a precise analysis

of M, is quite difficult. On the other hand, the asymptotic behaviod&f, an analogous parameter of
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tries built over independent strings, is well-understood. Specificalfyasymptotically follows the loga-
rithmic series distribution (plus some fluctuations whep/ In ¢ is rational). In Ward and Szpankowski
(2004), a precise analysis 81! is given via the analysis of independent tries, using recurrence relations,
analytical poissonization and depoissonization, the Mellin transform, and complex analysis.

To defineM !, we consider the situation described above, but we build a trie freml independent
strings fromA*. So we consider independeXi{i)’s; specifically, we defin& (i) = X1 (i) X2 (1) X3(4) . . .,
where{X; (i) | 7,7 € N} is a collection of i.i.d. random variables. We ietdenote thdongestprefix of
X (n + 1) such thatX (i) also hasw as a prefix, for somewith 1 < i < n. ThenM/ is defined as the
number ofX (i)'s (with 1 < < n) that havew as a prefix. So

M! =#{1 <i<n|X(i) = X1(i)X2(i)X3(i) ... hasw as a prefi}. (©))

To define M via tries, first consider a trie built from the + 1 independent strings from*. Next,

consider thénsertion pointof the (n + 1)st string. ThenV/,, is exactly thenumber of leavem the subtree
rooted at the branching point of tlie + 1)st insertion. As above, suppose that thet 1)st string starts
with w@. Then, examining the first strings, if there are exactly strings that begin withwa (again

a = 1 — /), and the othen — k strings do not begin withy, we conclude thad/! = k.

Since we know from Ward and Szpankowski (2004) th&t follows the logarithmic series distribution
plus some fluctuations, then it suffices to prove thit has a similar asymptotic distribution. To accom-
plish this goal, we compare the distributionaf, in suffix trees to the distribution afZ! in independent
tries.

Briefly, our proof technique is the following: We 1t/ (z,u) = >, <. P(M, = k)u*z" and
M (z,u) = Y h eoo P(MI = k)u*2" denote the bivariate generating functions fdf, and M,
respectively. Tofst’uay these generating functions, we consider'thdefined above. Specifically, for
M (z,u), we recall from (2) that ifw denotes the longest prefix &f "1 = X, .1 X,, 12X, ;3. .. that
appears as a prefix of ad\j(i) = X;Xi+1X,42 ..., thenM, enumerates the number of such occurrences
of w. This approach td/(z, ) allows us to sum over alb € A* instead of summing ovet,n € N.
Similarly, for M*(z,u), we utilize (3) to see that ifr denotes the longest prefix of (n + 1) = X;(n +
1)X2(n+1)X3(n +1)... that appears as a prefix of ai (i) X2 (i) X5(i) . . ., thenM is precisely the
number of such occurrenceswf Therefore, to determin&/’(z, ), we can sum over all € A* instead
of summing over the integefsandn.

We note that thél (Vs are highly dependent on each other. In factJf j, thenX ) = X, X, 1 X410 . ..
is a substring ofX ) = X;X;j11Xj42.... This apparently makes the derivation of the bivariate gener-
ating functionM (z, ) quite difficult. We overcome this hurdle by succinctly describing the degree to
which a suffix of X can overlap with itself. We accomplish this by utilizing the autocorrelation polyno-
mial S,,(z) of a wordw, which measures the amount of overlap of a wardith itself. As mentioned
above, the autocorrelation polynomial is defined as

Sw(z)= > P(wyy,)z"" (4)

keP(w)

whereP (w) denotes the set of positiohf w satisfyinguw, . .. wy = Wm—k41 - . . Wiy, thatis,w’s prefix
of lengthk is equal tow’s suffix of lengthk. Via the autocorrelation polynomial, we are able to surmount
the difficulties inherent in the overlapping suffixes. Thus, using), we obtain a succinct description of
the bivariate generating functiaif (z, ). The autocorrelation polynomial is well-understood; we utilize
several results about,, (z) from Régnier and Szpankowski (1998) and Lothaire (2005). In particular,
when comparing/ (z,u) andM? (z,u), it is extremely useful to note that the autocorrelation polynomial
Sw(z) is close to 1 with high probability (foru| large).

In order to obtain information about the difference of the two BGFQas u) = M (z,u) — M (z,u),
we utilize residue analysis. We make a comparison of the polés(ef v) and M (z,u) using Cauchy’s
theorem (integrating with respect t). As a result, we prove thad, (u) = [z"]Q(z,u) = O(n™°)
uniformly for |u| < p~'/2 asn — oco. Then we use another application of Cauchy’s theorem (integrating
with respect ta). Specifically, we extract the coefficieR(M,, = k) — P(M! = k) = [u*2"]Q(z,u) in
order to prove our main result.

Theorem 2.1 There exist > 0 andb > 1 such that
P(M, =k)—P(M! =k)=0(n"b") (5)

for large n.
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Therefore, the distributions @ff,, andM! are asymptotically the same. We conclude thiatalso asymp-
totically follows the logarithmic series distribution (plus some fluctuations vihert In ¢ is rational).

Theorem 2.2 There exist > 0 ande; > 0 (for eachj € N) depending o such that thejth factorial
moment of\/,, is

qa(p/q)’ + p(a/p)?
h

where~; is a periodic function with mean 0 and small modulusip/ In ¢ is rational, and otherwise
vi(x) — 0asz — oo. Alsoh = —plogp — qlog ¢ denotes the entropy of the source. The probability
generating function olM,, is

+ 75 (logl/p n)+ O(n=) (6)

gIn (1 —pu) +pln (1 —qu)
h

for |u| < p~1/2 wherey(-, u) is a periodic function with mean 0 and small modulusif/ In ¢ is rational,
and otherwisey; (u, z) — 0 (uniformly for|u| < p~1/2) asxz — oco. More precisely,

E[uM") = —

W(IOgl/p n,u) +0(n=°), )

E[uMn] :i Pg+ ¢p . Z 2kr7rzlog1/pn:[‘(Zk)(qu+qj (2 )j uj—&—O(n_E) ®)

jh Jlp= T Inp +¢=#+11ngq)

j=1 keZ\{0}

whenlup/Ilng = r/t for somer,t € Z, we havez;, = 2krri/Inp. Therefore, ag — oo, we conclude
that M, follows the logarithmic series distribution plus some fluctuations if/ In ¢ = r/t is rational,
ie.,
. Pla+dp 20810 T (24) (pq + ¢7p) (21 ) _
P(M,=j)=———" - O(n™°). 9
= ’ 1; A np + g Ing) O ) ©)

If Inp/In g is irrational, thenM,, asymptotically follows the logarithmic series distribution, without fluc-
tuations.

Note that the average value 8f,, is asymptotically%, and alsolM,, is highly concentrated around the
mean; this property of\/,, is very desirable for the error correction scheme described in Lonardi and
Szpankowski (2003).

3 Proofs

We first derive the bivariate generating functions fd, and M, denoted as\/(z,v) and M (z,u),
respectively. Then we prove a few useful lemmas concerning the autocorrelation polynomial. Next,
we prove thatV/ (z,«) can be analytically continued from the unit disk to a larger disk. Afterwards, we
determine the poles dff (z, v) andM? (z,u). We writeQ(z,u) = M (z,u)—M?(z,u); we use Cauchy’s
theorem to tha®),, (u) := [2"]Q(z,u) — 0 uniformly foru < p~'/2 asn — oc. Then we apply Cauchy’s
theorem again to prove thB(M,, = k) — P(M} = k) = [u*2"]Q(z,u) = O(n=<b~*) for somee > 0
andb > 1.

We conclude that the distribution of the multiplicity matching param&fgris asymptotically the same
in suffix trees as in tries built over independent strings, M, and M have asymptotically the same
distribution. Therefore)/,, also follows the logarithmic series distribution plus some fluctuations.

3.1 BGF for the Multiplicity Matching Parameter of Independent Tries

First we obtain the bivariate generating function idy , which is the multiplicity matching parameter for
a trie built over thendependenstrings X (1),..., X (n + 1), whereX (i) = X;(i)X2(¢)X3(7) ... and
{X;() | i,j € N} is a collection of i.i.d. random variables with(X (i) = 0) = pandP(X;(i) = 1) =

g = 1 —p. We letw denote théongest prefivof both X (n+ 1) and at least one other stridg(:) for some

1 < i < n. We write3 to denote thé|w| + 1)st character of (n + 1). WhenM = k, we conclude that
exactlyk stringsX (i) havewa as a prefix, and the other— k strings X (i) do not havew as a prefix at
all. Thus the generating function far! is exactly

M (z,u) = Z ZP = k)uF2" = z:: Z Z < ) (P(wa))*(1 — P(w))"Fukz".

n=1k=1 =1 weA*
acA

(10)
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After simplifying, it follows immediately that

P(B)P (w) 2P(w)P(a)
M (z,u) = “ . (12)
(2, ) w;* 1-2(1-P(w)) 1 - 2(1 +uP(w)P(a) — P(w))

acA
Our reasoning about/! (z, u) can be applied when we derive generating funcfié(x, u) for M,, in the
next section, but the situation will be more complicated, because the occurrencesiverlap.

3.2 BGF for the Multiplicity Matching Parameter of Suffix Trees

Now we obtain the bivariate generating function faf,,, which is the multiplicity matching parame-

ter for a suffix tree built over the first + 1 suffixesX®,... X+ of a string X (i.e., X =
X;X;11Xiy2...). The bivariate generating function for the multiplicity matching parameter is much
more difficult to derive in the dependent (suffix tree) case than in the independent (trie) case, because the
suffixes of X are dependent on each other. Weusdenote thdongest prefirof both X (1) and at least
one X ) for somel < i < n. We write 3 to denote thé|w| + 1)st character o (*+1); whenM,, = F,

we conclude that exactly suffixesX (V) havewa as a prefix, and the other— k stringsX () do not have

w as a prefix at all. Thus, we are interested in finding strings with exaatlycurrences ofva, ended on

the right by an occurrence afs, with no other occurrences af at all. This set of words is exactly the

languageR ,, (7™ o)1 T4 8, where

Rw = {v|wv contains exactly one occurrence of w, located at the right end}

7% = {v|waw contains exactly two occurrences of w, located at the left and right ends(12)

So, the generating function far,, is

Z Y. D Pl < > p(m)z|t+1u>“ S P(p)eltlel=t(13)

=l wedl s€Rw teT™ veTs

After simplifying the geometric sum, this yields

Ru(z) Pla)T{(2)
M(z,u) = w;* uP(3) T P(a)zuqu,a)(z) )

acA

(14)

We note thatR,,(z)/zI"*! = P(w)/D,(z) (Régnier and Szpankowski (1998)), whelg,(z) = (1 —
z)Sw(z) + 2P (w) and whereS,,(z) denotes the autocorrelation polynomial for Recall thatS,, (=)
measures the degree to which a wardverlaps with itself, and specifically

> Puyy,)zm " (15)

keP(w)

whereP(w) denotes the set of positiokof w satisfyingw; . .. wx = Wym—g41 - . - Wi, thatis,w’s prefix
of lengthk is equal tow’s suffix of lengthk; also,m = |w|. Returning to (14), it follows that

_ \ WPOP(w)  P()Ti(2)
M(zyu)—w;* D) 1Pl 5} = (16)

acA
In order to derive an explicit form a¥/(z, u), we still need to findr(®) (2). If we define

M, = {v]|wv contains exactly two occurrences of w, located at the left and right ends}17)

(@)

then we observe that7,,’ is exactly the subset of words df1,, that begin witha; We useH "
denote this subset (i.64\") = M,, N (@.A%)), and thusvZ,.*) = H'. So (16) simplifies to

B uP(B)P(w) Hl(ua)(z)
M(Z,U) o w;* Dw(z) 1— UHq(ua)(Z) ' (18)

acA
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In order to computqu(ﬁ) (2), we write M, = HE +HE whereH! is the subset of words froov.,,

that start withs (i.e., HP = My n (6A*)). (Note that every word oM, begins with eithery or 3,
because the empty woed¢ M.,,.) The following useful lemma is the last necessary ingredient to obtain
an explicit formula forM (z, u) from (18).

Lemma 3.1 Let’l—{g,?) denote the subset of words from,, that start witha.. Then

Dya(z) — (1 —2) .

O N E

(19)

Proof We use the concepts and notation froragRier and Szpankowski (1998) and Lothaire (2005)
throughout. In particular, we define

Uy, = {v | wo contains exactly one occurrence of w (located at the left end)} (20)
and we recall from (12) and (17) above that

Rw = {v]v contains exactly one occurrence of w, located at the right end}
M, = {v]wv contains exactly two occurrences of w, located at the left and right ends}21)

The following notation is similar but slightly adapted for our proof.

U = {v | v starts with a, and wv has exactly 1 occurrence of wa and no occurrences of w3} .
(22)
We note that the set of words with no occurrencesugfis exactly A* \ R,3(M.yg)* Uy, Which has
generating function
1 Rup(2)Uws(2)
1—2 1— Mys(z)
Now we describe the set of words with no occurrences®in a different way. The set of words with no
occurrences ofv3 and at least one occurrencewd is exactlyR ., ( Sﬂa))*u&“), which has generating
function R, (2) &“)(z)/(l — H (2)). The set of words with no occurrenceswaf and no occurrences
of wais exactlyR,, + (A* \ R, (M) *U). (Note that the set of such words that enduiis exactlyR,,;
on the other hand, the set of such words that do not endimexactly.A* \ R,,(M,,)*U.) So the set
of words with no occurrences afa and no occurrences af has generating functioR,,(z) + 1/(1 —
2) — Ry (2)Uw(2) /(1 — My (2)). So the set of words with no occurrencesgf has generating function

(23)

Ru(2)UM () 1 Ry(2)Uy(2)
m + Rw (Z) + - . (24)

1—2z 1-—My(2)
Combining (23) and (24), it follows that

1 Rup(2)Uus(2) _ Ru(2)US”(2) 1 Ry(x)Uu(2)
T 7T R oS M A e e Y R

e

Now we find the generating function fofl®). For each word € Z/{ff), eitherwwv has exactly one or two
occurrences ofv. The subset o\ of the first type is exactl%ga) = Uy, N (aA*), i.e., the subset of
words fromU,, that start witha. The subset o™ of the second type is exact}jfi,a). We observe that

Vi) A= (M + V) \ {a} (26)
(see Ward (2005)), sBS) (2) = (H (2) — P(a)2)/(z — 1). Sinceld™ = Vi + 1™, it follows that

_ Hq(ua)(z) —P(a) ZH,(UO‘)(Z) —P(a)z '

Ul (2) S HY () = (27)
Recalling equation (25), we see that
1 Rus())Uup(2)  Ru(2)(zHS(2) — P(a)2) 1 Ru(2)Uu(2)
1—2 1— Mys(z) (I—H&Q)(z))(z—l) + Ru(z) + 11—z 1—My(2) (28)
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Simplifying, and usind/,, (z) = (1 — M, (z))/(1—z) andU,g(z) = (1 —M,p(2))/(1—z) (see Regnier
and Szpankowski (1998)), it follows that

Rus(z) _ zP(B) (29)

Ry(2)  1-H ()

Solving for H5 (z) and then usingi,, (z) = 2™ P(w) /Dy (z) andRys(z) = 2™ 1P (w)P(3)/Duws(2)

(see Regnier and Szpankowski (1998)), it follows that

Dy(2) — Dyp(2)
Dy (2)

)+2"P(w) = (1=2)Sup(2) =" TP (w)P(B) = (1-2)(Swa(2)—
1 — 2). Thus, (30) completes the proof of the lemma.

HY (z) =

w

(30)

NoteD,,(z)—Dyg(z) = (1—2)Sy, (2
1) + 2" P(w)P(a) = Dya(z) — (
O

Using the lemma above, we finally observe a form\6fz, «) that we summarize below.

Theorem 3.1 Let M (z,u) := Y oo S22 P(M,, = k)u*2" denote the bivariate generating function
for M,,, the multiplicity matching parameter of a suffix tree built over the first suffixesx (D, ..., X (»+1)
of a stringX. Then

B uP(3)P(w) Duya(z) = (1= 2)
M(z,u) =) Do(2)  Du(2) — u(Dualz) — (1—2)) 1)

weA*

acA
for |u| < 1and|z| < 1. HereD,,(z) = (1 —2)Sy,(z) + 2"P(w), andS,,(z) denotes the autocorrelation
polynomial forw, defined in (1).

3.3 On the Autocorrelation Polynomial

Throughout the rest of our analysis we assume that, without loss of genepalityy. Note thatp <

/P < 1, so there existp > 1 such thatp,/p < 1 (and thuspp < 1 too). Finally, defined = ,/p.

We establish a few lemmas about the autocorrelation polynomial that will be important for our analysis.
Recall that the autocorrelation polynomialds (2) = >;.cp ) P(w}" )z"™"*, whereP(w) denotes the

set of positiong: of w satisfyingw ... wr = Wym—k+1 - - . W, that is,w’s prefix of lengthk is equal to

w's suffix of lengthk.

The autocorrelation polynomidl,, () has aP (wy" ,)z™"* term if and only ifw has an overlap with
itself of lengthk. Since each worad overlaps with itself trivially, then every autocorrelation polynomial
has a constant term (i.e”*~™ = 2 = 1 term). With high probability, howevety has very few large
nontrivial overlaps with itself. Therefore, with high probability, all nontrivial overlaps afith itself are
small; such overlaps correspond to high-degree ternt;,6£). Therefore, whem is a randomly chosen
long word, thenS,,(z) is very close to 1 with very high probability. The first lemma makes this notion
mathematically precise.

Lemma3.21f 0 = (1 —pp)~! > 1, then
> [1Sulp) = 1] < (p6)*0]P(w) > 1 - 5*6 (32)
we Ak

where[A] = 1if A holds, and[A] = 0 otherwise.

Proof Our proof is the one given in Fayolle and Ward (2005). Note figtz) — 1 has a term of degree
i < jifandonlyifm —i € P(w) with 1 <i < j. Therefore, for each suehand eachv; . .. w;, there is
exactly one wordv; 11 . .. wj, such thatS,,(z) — 1 has a term of degree Therefore, for fixed andk,

Z [Sw(z) — 1 has a term of degree < j]P(w)

we Ak
< Z Z P(w;y...w;) Z [Sw(z) — 1 has a term of degree i|P(w;y1 ... wg)
1<i<y wl,...,wieA"’ wi+1,...,wk€Ak*i
, R
< Y ) Pwrwpti= D phi < f_ (33)

1<i<j wy,...,w; € A? 1<i<j p
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We usej = [k/2]. Thusy_, . 4 [all terms of Sy, (z) — 1 have degree > |k/2]]P(w) > 1 — 6%6.
Note that, if all terms of,,(z) — 1 havedegree > | k/2], then

i (o) (op)*?

[Sw(p) =11 < > (op) < < = (p)*0. (34)
isThr2) 1—pp I—pp =~ 1—pp
This completes the proof of the lemma. O

Using this lemma, we can quickly obtain another result that is similar but slightly stronger.
First consider wordsv such thatlS,,(p) — 1| < (pd)*6. Write S,,(z) = Zf’;ol a;z" and Sya(2) =
Zf:o b;z*. Observe that eithér, = 0 or b; = a;. The following lemma follows immediately:

Lemma3.31f = (1 —pp)~' +1anda € A, then

3" [max{|Su(p) — 11, [Swal(p) — 11} < (p8)*0]P(w) > 1 — 5*0. (35)
weAF
Also, the autocorrelation polynomial is never too small. In fact

Lemma 3.4 Definec = 1 — p,/p > 0. Then there exists an integéf > 1 such that, forlw| > K and
|z] < pand|u| <671,

|Sw(2) — uSwa(2) +ul >c. (36)
Proof The proof consists of considering several cases. The only conditidi fer(1 + 5*1)% <
¢/2. The analysis is not difficult; all details are presented in Ward (2005). O

3.4 Analytic Continuation

Our goal in this section is to prove the following:

Theorem 3.2 The generating function/ (z, u) can be analytically continued for| < §—! and|z| < 1.
The proof requires several lemmas and observations. We always aggumé—!.

Lemma 3.5 If 0 < r < 1, then there exist§’ > 0 and an integer; (both depending on) such that

|Duw(2) = u(Dya(z) = (1 = 2))[ = C (37)

for |w| > K; and|z| < r (and, as beforeju| < §1).

Proof Consider thel andc defined in Lemma 3.4, which tells us that, for jalll > K, we have
|Sw(z) - uswoz(z) + u| 2 & (38)

for |z| < p. So, for|w| > K, we haveD,,(2) — u(Dya(2) — (1 —2))| > (1 —r)c—r™p™(1 — 5~ Lrp).
Note that-™p™ (1 — 6~ 'rp) — 0 asm — oo. Therefore, replacind by a largerkK if necessary, we can
without loss of generality assume thétp™ (1 — 6~1rp) < (1 — r)c/2. So we define” = (1 — r)c/2,
and the result follows immediately. O

Now we can strengthen the previous lemma by dropping Ki€',“i.e., by not requiringw to be a long
word:

Lemma 3.6 If 0 < r < 1, then there exist€’ > 0 (depending om) such that
[Dw(2) = u(Dwa(2) = (1 = 2))| = C (39)

for |z| < r (and, as beforgju| < §—1).

Proof Consider theK; defined in Lemma 3.5. Lefy denote the €” from Lemma 3.5. There are
only finitely manyw’s with |w| < K, sayws,...,w;. For each suchw; (with 1 < j < ), we note
that D, (z) — w(Duw,a(z) — (1 — 2)) # 0for |z| < rand|u| < 677, so there exist&; > 0 such
that|D.,, (z) — u(Duy,a(z) — (1 — 2))| > C; for all [z] < rand|u| < 6~'. Finally, we defineC' =
min{C(hC’l,...,Ci}. O

Finally, we prove Theorem 3.2.
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Proof Con5|der1,z\ <r<1 We proved in Lemma 3.6 there exigis> 0 dependlng om such that, for
all |u| <61, we have - Settingu = 0, we also have ( 7 < =. Thus

[ Du (2)— u(Dua(z) (1- Z))\

|M(z,u ZZP ) Dualz) — (1= 2)]. (40)

acAweA*

Now we use Lemma 3.3. Consideranda with max{|S,, (p) — 1], |Swa(p) — 1|} < (pd)™0. It follows
immediately that

|Dua(2) = (1=2)] = |[(1=2)(Swa(2) =1) +2" ' P(w)P(a)| < (1+7)(pd)"0+r"F1p™p = O(s™),
(41)
wheres = max{pd, rp}. Now consider the other's anda’s. We have

1 1
Dua(2)~(1-2)] = [(1-2)(Sua ()~ )2 Pl P(a)] < TP iy, < LLDPP 4
L—pp 1—pp
(42)
so we defing’y = (1”)”” + 1 to be a value which only depends eifrecall thatr is fixed here). Thus

(M (z,u)] < Z > > P (2) = (1 =2))|
aE.Am>Ow€A
< ZZ| _mO)O(s™) + 6meCy| < BP0 ZZO = q@a)
acAm>0 aEAm>0
and this completes the proof of the theorem. O

3.5 Singularity Analysis

We first determine (fofu| < §1) the zeroes oD, (2) — u(Dwa(z) — (1 — 2)) and (in particular) the
zeroes ofD,, ().

Lemma 3.7 There exists an integek, > 1 such that, for fixed (with|u| < §—1) and|w| > K, there
is exactly one root oD, (z) — u(Duwa(2) — (1 — 2)) in the closed disKz | |z| < p}.

Proof Let K andc be defined as in Lemma 3.4. Without loss of generality (replaéiryy a largerks,
if necessary), we can also assume tap) %2 < c¢(p—1) andK, > K, (whereK] is defined in Lemma
3.5). Also, we can choosE, large enough (for use later) such tRat > 0 with

p(1—p%2(14671p)) — 1> ¢y and thus p(1—p2) —1>¢y. (44)

We recall0 < ppd—! < 1, and thus) < 1 — ppd—! < 1. Since|u| < §~! and|z| < p, then for
jw| > K> we have|P (w)2" (1 — uzP ()| < (pp)™ (1 + 6~ pp) < 2(pp)™ < c(p — 1) < |(Sul(z) -
uSywa(2) +u)(p — 1)|. Therefore, forz on the circle{z | |z| = p}, we havelP(w)z™ (1 — uzP(a))| <
[(Sw(2) — uSwa(z) + u)(z — 1)|. Equivalently,

[(Dw(2) = w(Duwa(2) = (1 = 2))) = (Sw(z) — uSwa(?) + u)(z —1))| < |(Sw(z)—uswa(z)+u)(?—§)\ :
45
Therefore, by Roudtis TheoremD,,(2) — u(Dywa(2) — (1 — 2)) and(Sy (2) — uSwa(z) + u)(z — 1)
have the same number of zeroes inside the {isk|z| < p}. Since|S,(2) — uSwa(z) + u| > cinside
this disk, we conclude th&s,, (z) — uSy,q(z) +u)(z — 1) has exactly one root in the disk. It follows that
Dy (2) — u(Dya(z) — (1 — 2)) also has exactly one root in the disk. O

Whenu = 0, this lemma implies (fofw| > K5) thatD,,(z) has exactly one root in the digk | |z| < p}.
Let A,, denote this root, and l&8,, = D, (A,,). Also letC,, (u) denote the root aD,, (z) — u(Dya(z) —
(1 —z))inthe closed disKz | |z| < p}. Finally, we define

Bulw)i= (42 (Dule) = Dual) = (1= )| = DilC) = uDhalC) +1)- (40)

2=CYy

We have precisely determined the singularities\bfz, ). Next, we make a comparison 8f(z, u) to
M (z,u), in order to show thad/,, and M have asymptotically similar behaviors.
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3.6 Comparing Suffix Trees to Tries

Now we define

Q(z,u) = M(z,u) — M"(z,u). 47)
Using the notation from (11) and (31), if we write
M (su) = uP(B)P(w) zP(w)P(a)
Wk 11;(28113? I)’(w)) 1 —Dz(1<—|—)uP((1w)P§a) —P(w))
Mual) = 7D ) Dule) — uDualz) — (1 2) )
then we have proven that
Q(zu) = > (Mya(z,u) = M), ,(2,u)). (49)

weEA*
acA

We also defing),,(u) = [2"]Q(z,u). We denote the contribution @,,(«) from a specificw anda as
G2 () = [2")(My,a(z,u) — ML ,(z,u)). Then we observe that

1 dz
(w,a) _ _ I
QW) = g (M) = M) S (50
where the path of integration is a circle about the origin with counterclockwise orientation.
We define
Lpa(pyu) = i/ (Mo (2,0) — M (2, u)) -2 (51)
w,a\ Py - i 2l=p w,a\~» w,a\"7 n+l !

By Cauchy’s theorem, we observe that the contributio@ {¢u) from a specificv anda is exactly

My o(z,u) My o(2,u)
(w,a) _ _ . w,a\~y _ . w,a\ <)
Q” (U) o Iw,a (p7 u) Z:%Sw ZnJrl z:}_é’ib(u) Zn+1
e Mbalw N Miolow) e
+z:1/(1ESP(w)) zntl z:1/(1+up(£sp(a)—r>(w)) Zntl
To simplify this expression, note that
My o(2,u) P(BP(w) 1
zl;{%sw Zn+1 - B, A?U+1
Res My.o(z,u)  P(B)P(w) 1
2=Cp(u) 2711 a E,(u) Cy(u)rt!
R Mi},a(zau) P P 1 P n
z:l/(leP(w))T = P@EPw)(1-P(w))
Mialeu) P(8)P(w)(1 + uP(w)P(a) — P(w))"  (53)
(P S () P(w)) 2T ~P(B)P(w)(1 + uP(w)P(a) — P(w))
It follows from (52) that
PBHP(w) 1 P(B)P(w 1
QW = Loalpu)+ SDP) P (w)

B, Ayl B,
+P(PA)P(w)(1 - P(w))" — P(B)P(w

We next determine the contribution of the= A,, terms of M (z,u) and thez = 1/(1 — P(w)) terms of

M (z,u) to the difference),, (u) = [z"]|(M (z,u) — M1 (z,u)).

Lemma 3.8 The “4,, terms” and the ‘1 /(1—P(w)) terms” (for |w| > K>) altogether have onl@)(n )

contribution to@,, (u), i.e.,

(w)  Cuylu)"*!
)1+ uP(w)P(a) — P(w))™. (54)

I
Z (— Res 7Mw,a(z,u) + Res Muw(z,u)) =0(n™°), (55)

=4, "t 2=1/(1-P(w))  2z"t!

for somee > 0.
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Proof We define

fula) = S + (1= P())” (56)
for z real. So by (53) it suffices to prove that
> P(B)P(w)fulx) =0(z"). (57)

|w|> Ky
acA

Note that}” ui>x, P(3)P(w)f.,(z) is absolutely convergent for all Also f,,(z) = fu(z) — fu(0)e™
acA

is exponentially decreasing when— +oo and isO(x) whena — 0 (notice that we utilize the,,(0)e™*
term in order to make sure thdi, (z) = O(z) whenz — 0; this provides a fundamental strip for the
Mellin transform in the next step). Therefore, its Mellin transfofjn(s) = fooo Fuwl(x)z*~t dz is well-
defined forR(s) > —1 (see Flajolet et al. (1995) and Szpankowski (2001)). We compute

Fits) = 1) (PEL = 4 (g1 - P - 1) (58)

wherel" denotes the Euler gamma function, and we note that

(log Ap)~* = (;fz‘i))) (14 O(P(w)))
(~log(1 — P(w)))* = P(w)(1+O0(P(w))) (59)
Also
1
Ay = 1+mP(w)+O(P(w)2)
B, = Sw(1)+<25“’((11))+m> P(w) + O(P(w)?) (60)
Therefore ) .
5= s OPw) (61)
Sofz(s) = T(s) (s +O(lwlP@))) ((245) (140 @) 1) +P(w)=*(1+0(P(w))) -

D) (51
1)7“ )(P(w) (Su(1)! 11 ?o)(| wP(W))) + 5y = 1+ O(|w[P(w))).

We defineg*(s) = EMsz P(B3)P(w)f?(s). Then we compute

=S PB) Y P@iils) =S PO Y (sunfa ™, 138) 001),  (62)
acA lw|>K>2 acA m=Ks

where the last equality is true because> p~ %) > ¢~%R() whenR(s) is negative, and also because
g R > p=R6) > 1 whenR(s) is positive. We always havé < 1. Also, there exists > 0 such
thatg=°0 < 1. Thereforeg*(s) is analytic inR(s) € (—1,¢). Working in this strip, we choosewith

0 < € < ¢. Then we have

e+i00
> POP@L@ =5 [ g tdst 3 PEP@AO . (63

lw|> Ko lw|> Ky
acA acA

Majorizing under the integral, we see that the first tern®igz—°) sinceg*(s) is analytic in the strip
R(s) € (—1,¢) (and—1 < € < ¢). Also, the second term ©(e~*). This completes the proof of the
lemma. O

Now we bound the contribution t@),,(u) from the C,,(u) terms of M (z,u) and thez = 1/(1 +
uP(w)P(a) — P(w)) terms of M (z,u).
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Lemma 3.9 The “C, (u) terms” and the “1/(1+uP(w)P(a) —P(w)) terms” (for |w| > K>) altogether
have onlyO(n <) contribution toQ,,(u), for somee > 0. More precisely,

Mw (0% M’l{) (0% Z’ u
Z — Res Mu.alz,u) + Res # =0(n~°). (64)
e 2=Cyp(u)  2"t1 z=1/(1+uP(w)P(a)—P(w)) 2711
ag.AQ
Proof The proof technique is the same as the one for Lemma 3.8 above. O

Next we prove that thé,, ., (p, u) terms in (54) havé (n <) contribution toQ),, (u).

Lemma 3.10 The “I,, (p,u) terms” (for |w| > K,) altogether have onlyO(n~¢) contribution to
Qn(u), for some: > 0. More precisely,

Z Iw a P’ O( 6)' (65)
|w|>Ko
a€cA

Proof Here we only sketch the proof. A rigorous proof is given in Ward (2005). Recall that

W = L u w 1 Dya(z) — (1= 2)
Lualpu) = 5 i P(ﬂ)P(1 )<Dw(z) Dy (2) ;zc(é?wf()z) —(1-2)) ]
TT—2(1—Pw)) I - 2(1+ uP(w)P(a) - P(w))) vt (00)

By Lemma 3.7 K, was selected to be sufficiently large such that)™ (1 —5~1pp) < (p—1)¢/2. Thus,
writing C, = (p—1)c/2, we havel /| D, (2) —u(Dya(z)—(1—2))| < 1/Cy and thusl /| D, (z)] < 1/C4.
Also1/|1-z(1-P(w))| < 1/cg andl/|1 — z(1 + uP(w)P(a) — P(w))| < 1/cq by (44). So we obtain

[Lw.a(p,u)l = O(p")P(w)(Swalp) — 1) + O(p~")P(w)O((pp)™) . (67)
Thus, by Lemma3.3 " c 4 >juj=m Hwa(p:w)l = O(p~")O((pd)™). We conclude vz, [Lu,a(p; u)] =
O(p~™), and the lemma follows. O

Finally, we consider the contribution 1@,,(u) from small words|w|. Basically, we prove thatw| has

a normal distribution with mea%\ log n and variance log n, whereh = —plogp — qlog q denotes the
entropy of the source, artdis a constant. Thereforay| < K, is extremely unlikely, and as a result, the
contribution toQ,, (v) from wordsw with |w| < K5 is very small.

Lemma 3.11 The termsy” ju<x, (Mo (2, u) — My, (2, u)) altogether have onlY(n =) contribution
acA

to @ (u).

Proof Let D,, denote the depth of thg: + 1)st insertion in a suffix tree, i.el),, < k if and only if

Xn+1 Ce XnJrk 75 Xz'+1 - XiJrk forall0<i<n (68)

i.e., D,, = |w| in the notation of Section 3.2. Similarly, & denote the depth of thg + 1)st insertion
in a trie built overn + 1 independent strings, i.el)} < & if and only if

Xi(n+1)... Xp(n+1) # X1(i)... Xx(6) foralll <i<n (69)

i.e., D! = |w| in the notation of Section 3.1.
Therefore

("] Y (Myal(z,u)—Mp o (z,0) = > > (P(My, = k& Dy, = i) — P(M} =k & D} = i) u".
hwl< K2 <K k=1
(70)
Noting thatP(M,, = k & D,, = i) < P(D,, = i) andP (M} = k & D! = i) < P(D} = i), it follows
that

("] Y [Mua(z,u) = M) (z,u) < > Z i)+ P(DL=9)) [ulf.  (71)

IWI<J{‘<2 i<Kgo k=1
ac
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In Jacquet and Szpankowski (1994), theicaldepthD?, , in a trie built ovem + 1 independent strings
was shown to be asymptotically normal with meaiog(n + 1) and variance log(n + 1). We observe
that D/ (defined in (69)) andD!, ; have the same distribution; to see this, observeBt{d2} < k) =
2=k P(w)(1 = P(w))" = P(DL,, < k). Therefore,D} is also asymptotically normal with mean
%logn and variancé log n. In Ward (2005), we rigorously prove that! and D,, have asymptotically
the same distribution, namely, a normal distribution with medng(n + 1) and variance log(n + 1).
Therefore, considering (71) (and noting ti&s is a constant), it follows that

"] D [Mualzu) = M o(z,u)] = O(n™). (72)
ke
This completes the proof of the lemma. O

All contributions to (54) have now been analyzed. We are finally prepared to summarize our results.

3.7 Summary and Conclusion

Combining the last four lemmas, we see t@at(u) = O(n~¢) uniformly for |u| < §~1, wheres—! > 1.
For ease of notation, we defihe= §—!. Finally, we apply Cauchy’s theorem again. We compute
1 Qn(u)

P(M, = k) — P(M! = k) = [u*2")Q(z,u) = [u*]Qn(u) = 2t sy du . (73)

Since@, (u) = O(n~°), it follows that

1 O(n—°)
o 2O

[P(M,, = k) —P(M, = k)| < =0(n~b7"). (74)

So Theorem 2.1 holds. It follows thaf,, andM/;! have asymptotically the same distribution, and therefore
M,, and M asymptotically have the same factorial moments. The main result of Ward and Szpankowski
(2004) gives the asymptotic distribution and factorial moments/@f As a result, Theorem 2.2 follows

immediately. Thereforel/,, follows the logarithmic series distribution, i.&(M,, = j) = ”j"";’ihqu (plus
some small fluctuations Ih p/ In ¢ is rational).
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