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Analysis of the average depth in a suffix tree
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In this report, we prove that under a Markovian model of order one, the average depth of suffix trees of index
asymptotically similar to the average depth of tries (a.k.a. digital trees) built indlependent strings. This leads

to an asymptotic behavior gfogn)/h + C for the average of the depth of the suffix tree, whens the entropy

of the Markov model and” is constant. Our proof compares the generating functions for the average depth in
tries and in suffix trees; the difference between these generating functions is shown to be asymptotically small. We
conclude by using the asymptotic behavior of the average depth in a trie under the Markov model found by Jacquet
and Szpankowski ([4]).
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1 Introduction

The suffix tree is a data structure that lies at the core of pattern matching, used for example in the lossless
data compression algorithm of Lempel and Ziv [7]. Suffix trees are also utilized in bio-informatics to track
“significant” patterns. A thorough survey of the use of suffix trees in computer science can be found in
Apostolico ([1]). The average depth in a suffix tree of index 1 is the average time (number of letters

read) necessary to insert a new suffix into a tree of indean alternate interpretation is the average time

to discriminate between the current suffix and any previous one.

A device called asourceemits letters randomly, and independently of their emission date. In this
report, we focus on Markov sources of order one: the letter emitted at a given time is a random variable
obeying a Markov dependency of order one i.e., the distribution of each letter depends only on the letter
actually emitted immediately beforehand). Increasing the order introduces no new technical challenges—
computations only become more intricate—and our proof for a Markovian dependency of order 1 can
easily be extended to any source with greater Markovian dependency. We assume that the source is
stationary throughout this report. We denote the stationary probability vector-asmr;), the transition
probability matrix asP = (p;,;), and the probability the source starts emitting a text with the wosss
P(w). We also introduce the stationary probability maffixwhose rows are the stationary probability
vectorr. We make the usual assumptions that the underlying Markov chain is irreducible and aperiodic.

This paper focuses on the asymptotic behavior of the average depth in suffix trees. There are two
challenging parts in this study: first the suffixes on which the suffix tree is built are mutually dependent.
For example, if we just found the pattertn= 0000 in the text, then it suffices to have the lettenext,
in order to findw once more in the text. The trie (a.k.a. digital tree) is much easier to analyze than the
suffix tree, because the strings in a trie are independent from each other. The second challenge lies in the
probabilistic dependency between symbols (Markov model). The probability that a pattern occurs in the
text depends not only on the pattern itself but also on what was previously seen in the text.

In Jacquet and Szpankowski ([4]), inclusion-exclusion was used to obtain the asymptotics of the average
depth in an (independent) trie with underlying Markovian source. Therefore, it suffices for us to compare
the asymptotic average depths in suffix trees against that of independent tries (where the probability model
is Markovian in both cases). We prove that, for a Markovian source of order one, the average depth of a
suffix tree of index: has a similar asymptotic behavior as a trie builtostrings.

In section 2, we present the main results of this paper. We give the precise asymptotics for the average
depth in a suffix tree with an underlying Markovian source. Afterwards, we give a sketch of the proof.
In section 3 we prove that the autocorrelation polynorfig{z) is approximately 1 with high probability

1365-805Q0) 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



96 Julien Fayolle and Mark Daniel Ward

(for w of large length). To prove that suffix trees and independent tries have similar average depths, we
first derive bivariate generating functions oy, and D¢, in section 4. Then in subsections 5.1 and 5.2 we
analyze the difference between the generating function®foand D!, by utilizing complex asymptotics.
Ultimately, we conclude in subsection 5.3 that the depth in a suffix tree has the same average up to the
constant term as the depth in a trie. Our method is motivated by the analytic approach of Jacquet and
Szpankowski ([3]) for the suffix tree under a memoryless (a.k.a. Bernoulli) source model. Our results are
proved in the more general context of Markovian sources.

2 Main Results

Consider a tree (say it's binary and it shall be so throughout this paperym#hves numbered from 1
to n. The depthD,,(¢) of the leaf numbei is defined as the length of the path from the root to this leaf.
Pick one of then leaves at random (uniformly); thgpical depthD,, of the tree is the depth of the picked
leaf. The random variabl®,, informs us about the typical profile of the tree, rather than its height (i.e.,
the maximum depth).

A trie is defined recursively on a finite s&tof infinite words onAd = {0,1} as

0 if |S] =0,
o if |S] =1,
(o, trie(S\0), trie(S\1)) else

trie(S) =

whereS\« represents the set of words starting with the lettevhose first letter has been removed.

In order to build a suffix tree, one needs as input an infinite stfimmn A calledtextand an integer
n. We writeT = T, T5T5. .. and then'® = T;T; 1T, ... denotes théth suffix of T (for example,
T = T™, namely the entire string itself, is the first suffix). The suffix tree of indéailt on T is defined
as the trie built on the set of thefirst suffixes ofT" (namely, 7, ..., 7). In the context of suffix
trees,D,,(7) is interpreted as the largest valueko$uch that there exisis# ¢ with 1 < j < n for which
Tii+k71 _ T]j-i—k—l.

Our discussion in this paper primarily concerns the comparison of the average depths in suffix trees
versus independent tries. Throughout this discusdipnalways denotes the typical depth isaffixtree.
In a trie built overn independenstrings, we letD!, denote the typical depth.

In [4], the asymptotic behavior of the average depth for a trie builhandependent strings under
a Markovian source of order Was established using inclusion-exclusion. In this paper, we prove the
analogous result for suffix trees. Namely, we establish the asymptotic average depsfforteee with
an underlying Markovian source. Our proof technique consists of showindthand D! have similar
asymptotic distributions. To do this, we estimate the difference of their probability generating functions,
and show that the difference is asymptotically small.

In order to prove thaD,, and D!, have asymptotically similar averages, we first discuss the autocorre-
lation of a stringw. Since a stringv can overlap with itself, the bivariate generating functio(x, «) for
D,,, whereu marks the depth andthe size, includes the autocorrelation polynonsigl z). Fortunately,
with high probability, a random string has very little overlap with itself. Therefore the autocorrelation
polynomial ofw is close to 1 with high probability.

After discussing autocorrelation, we present the bivariate generating functions fobhaind D},
which we denote byD(z, u) and D?(z, u), respectively. We have

D(z,u) = : ;u > (zu)“",Df;((u;;2 and  D'(z,u) = 1;“ 3wl ZP(w)

_ 27
PR (ErE )

)

where®(z) is a generating function.

Our goal is to prove that the two generating functions are asymptotically very similar; it follows from
there thatD!, and D,, have the same average asymptotically up to the constant term.

In order to determine the asymptotics of the differeitfe, u) — D!(z, u), we utilize complex analysis.
From (1), we see thab!(z,u) has exactly one pole of order 2 for eaoh Using Rouck’s theorem, we
prove that, for|z| < p (with p > 1) and for sufficiently larggw|, the generating functio®,,(z) has
exactly one dominant root of order 2 for each ThereforeD(z,u) has exactly one dominant pole of
order 2 for eachu. We next use Cauchy’s theorem and singularity analysis to quantify the contribution
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from each of these poles to the differer@g(u) := u(1 — u)~1[2"](D(z,u) — D*(z,u)). Our analysis
of the difference?,, (u) ultimately relies on the Mellin transform.

We conclude from there that the averages of the depthgin suffix trees) andD!, (in independent
tries) are asymptotically similar. Therefor®,, has mear% log n plus some fluctuations. Specifically,

Theorem 1 For a suffix tree built on the first suffixes of a text produced by a source under the Markovian
model of order one, the average typical depth is asymptotically

1 h
E(D,) = 7 <logn + v+ ﬁ —H+ Pl(logn)) +0 (n—e) , (2)
for some positive, wherey is the Euler constant, is the entropy of the Markov sourdg, is the second
order entropy,H is the stationary entropy anf; is a function fluctuating around zero with a very small
amplitude. In particular

h:=— Z TiDi,j logpm- and H := — Z T IOgTFZ‘. (3)
i,jEA? i€A?

3 Autocorrelation

The depth of theth leaf in a suffix tree can be construed in the language of pattern matching as “the
length of the longest factor starting at a positioim the text that can be seen at least once more in the
text”. HenceD,, (i) > k means that there is at least another pattern in theltestarting WithTi’””"_1

While looking for the longest pattern ifithat matches the text starting in positigthere is a possibility
that two occurrences of this longest pattern overlap; this possible overlap of the patteith itself
causes complications in the enumeration of occurrencesiofa text. The phenomenon exhibited when
w overlaps with itself is calledutocorrelation

To account for this overlapping, we use the probabilistic version of the autocorrelation polynomial. For
a patternw of sizek, the polynomial is defined as:

k—1
Sw(z) == Z[[wicﬂ = wf+1]]P(w]]§7i+1|wk,i)zi. (4)
i=0

For simplicity, we introduce; = [w} ™" = wk, ;] where[.] is Iverson’s bracket notation for the indicator

function. We say there is an overlap of size- i if ¢; = 1. This means that the suffix and the prefix of
sizek — i of w coincide. Graphically, an overlap of a pattern (white rectangles) looks like this:

I
I
where the two black boxes are the matching suffix and prefix. For exarql81001001 has overlaps
of sizes 3, 6 and 9; note thab| (here|w| = 9) is always a valid overlap since the patternalways
matches itself. We defineeriod of a patternw as any integet for which ¢; = 1 (so a patternv often
has several periods), the minimal periadw) of w is the smallest positive period, if one existsuithas
no positive period fokw, we definen(w) = k).

We now formulate precisely the intuition that, for most patterns ofsjtlkee autocorrelation polynomial

is very close to 1. It stems from the fact that the sum of the probabilRies) over all loosely correlated
patterns (patterns with a large minimal period) of a given size is very close to 1.

)

Lemma 1 There exist < 1, p > 1 with p§ < 1, andé > 0, such that for any integet

> 1Sw(p) — 1] < (p0)*0]P(w) > 1 — 65" (5)

we Ak

Proof: Note thatS,,(z) — 1 has aterm of degreewith 1 < i < k —1ifandonlyifc; = 1. If ¢; = 1
the prefix of size of w will repeat itself fully inw as many times as thereiign k, hence knowing; = 1
and the first letters ofw allows us to describe fully the word. Therefore, given a fixed .. . w;, there
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is exactly one wordv; 11 . .. w; such that the polynomia,,(z) — 1 has minimal degreé < k. We let
ﬁi,j = p1u71,u)jr 7~rz = Tw;» andp = lina,)éz(ﬁi,ja 7}1) Then: for flxed] andk,
VA

J

SN Imw) =ilPw) =) > Ao hiora > [m(w) = ipiit1 - Pe-1.k

i=1 we Ak i=1 wy,..., w; €A Wig1,...,w EAR—?

J
< S s S~ k—i
= T1P1,2P2,3 """ Pi—1,45P
i=1 wi,...,w; €A’

(6)

but we can factop®—* outside the inner sum, since it does not depenabon . ., w;. Next, we observe

thatd ", .4 T1P12P23  Pi-1, = opPi-'1=1,so
; k—j
Z [Sw(z) — 1 has minimal degree < j]|P(w) < Zpk*z <P ,
‘ 1-p
weAF i=1
and this holds whep = |k/2]. So
plk/2] .
Z [all terms of S,,(z) — 1 have degree > |k/2]]P(w) > 1 — =1-06". @)
weAF 1=p
Remark that, if all terms of,(z) — 1 havedegree > |k/2], then
~ . pplk/2t i
1Sw(p) — 1] < Z (pp)" < p ﬁ = (pd)"0. (8)
i=|k/2)

We select = /p, 0 = (1 — p)~! and some > 1 with §p < 1 to complete the proof of the lemma. O

The next lemma proves that, fop| sufficiently large and for some radigs> 1, the autocorrelation
polynomial does not vanish on the disk of radius

Lemma 2 There existK, p’ > 1 with pp’ < 1, anda > 0 such that for any patterm of size larger than
K andz in a disk of radiusy’, we have
|Sw(2)| > a.

Proof: Like for the previous lemma, we split the proof into two cases, according to the inofethe
minimal period of the pattern of sizek. Since the autocorrelation polynomial always has= 1, we

write
k—1

Sw(z) =1+ Z P (Wi lwp—g)7. 9)
=i

We introducey’ > 1 such thapp’ < 1. Therefore, ifi > [k/2], then

k—1

. D, /\%
500 2 1= | ek afus)e?| 21— 220 (1
j=i
in|z| < p'. Butsincei > |k/2] andpp’ < 1, we get
Nk/2
Su()] =1 - 22 (1)

L—pp"’

We observe that, for somig; sufficiently large, any patterm of size larger thark’; satifies|S,,(z)| > «
and this lower bound: is positive.

We recall that ifc; = 1, the prefixu of sizei of w will repeat itself fully inw as many times as there
isiinkie. q:= |k/i] times, the remainder will be the prefixof v of sizer := k — |k/i]i, hence
w = ul*/ty, We also introduce the word such thatv’ = u (of lengtht := i —r =i — k + | k/i]d).
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If i < |k/2], we make the autocorrelation polynomial explicit:
Su(z) =1+ P v|wy)z" + P uv|wg)z? + - + P0'uf20|wy) 207D S, (2). (12)

Overall, we can writd (v'u/v|wy,) = A7t whereA = py, w1 ol s - Doty - - - Po,_ 0, 1S the product
of 4 transition probabilities, but sinae;, = v, we obtain

i N2 ing—1 1—(Az) ! ing—1
Su(z) =14+ A2' + (A2)? 4 (A1) 171800 (2) = =5 + (A2) 718w (2).  (19)
Then we provide a lower-bound fo$,, (2)|:
1— (At a1 1— (pp)ta=Y) (o
> |77 | \q > MrF \i(g—1)
501 2 | F 0| - st 2 ST s )
_ /)i(g—1) 1\i(g—1)
S 1) ()
1+ (pp')* 1—pp

We havepp’ < 1 so that(pp’)* tends to zero with. Sincei(q— 1) is close tok (at worsek /3 if w = uuv)
for someK, sufficiently large and patterns of size larger thgis only the term(1 + (pp’)?)~! remains.
Finally, we set’ = max{K1, K>}. O

4 On the Generating Functions

The probabilistic model for the random varialllg, is the product of a Markov model of order one for
the source generating the strings (one string in the case of the suffixtfeethe trie), and a uniform
model on{1,...,n} for choosing the leaf. Hence, X is a random variable uniformly distributed over
{1,...,n}, andT a random text generated by the source, the typical depth is

For the rest of the paper, thexponent on a quantity will indicate its trie version.

Our aim is to compare asymptotically the probability generating functions of the depth for a suffix tree
(namely,D,,(u) := ", P(D,, = k)u¥) and a trie (namelyD, (u) := >_, P(D}, = k)u*). We provide in
this section an explicit expression for these generating functions and their respective bivariate extensions
D(z,u) :=3, nD,(u)z" andD'(z,u) := Y, nD} (u)z".

We first deriveD!, (u). Each string from the set of stringsis associated to a unique leaf in the trie. By
definition of the trie, the letters read on the path going from the root of the trie to a leaf form the smallest
prefix distinguishing one string from the— 1 others. We choose uniformly a leaf among thieaves of
the trie. Letw € A* denote the prefix of length of the string associated to this randomly selected leaf.

We say thatD!, < k if and only if the othem — 1 texts do not havev as a prefix. It follows immediately

that
P(D},(i) <k) = Y P(w)(l —P(w)" ",
we Ak
consequently
1—u _ 1—u zP(w)
D! (u) = —— 1P (w) (1P (w))" d D! - ]
() ZA ul!P(w) (1-P(w)) an (2u) = — wg* M T e
(14)
for |u| < 1and|z| < 1.
The suffix tree generating function is known from [5] and [3]: fer < 1 and|z| < 1
1—u wl Pw)
- |w]
Dizyu) = —= > ()" 5=, (15)

weA*

where®,,(z) = (1 — 2)Sy(2) + 2I“IP(w)(1 + (1 — 2)F(2)) and for|z| < ||P —II||~*,

Tw,

> (P H)"“Z"] - L (P-mU - (P - M2) ww-  (16)

TT.
n>0 w1
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5 Asymptotics

5.1 Isolating the dominant pole

We prove first that for a pattermn of size large enough there is a single dominant ro@idz). Then we
show that there is a disk of radius greater than 1 containing each single dominant roobgf(thes for
anyw of size big enough but no other root of tig,(z)’s.

Lemma 3 There exists a radiup > 1 and an integerK’ such that for anyw of size larger thank”,
D.,(z) has only one root in the disk of radiys

Proof: Letw be a given pattern. We apply Row Theorem to show the uniqueness of the smallest
modulus root of0,,(z). The main condition we need to fulfill is that, on a given cirele= p,

F(2) = (1= 2)8u(2)] > [P(w)z" (1 + (1 = 2)F(2))| =: g(2). (17)

The functionf is analytic since itis a polynomiak; is analytic for|z| < ||P—TII||~! (where|| P—T1||~! >
1), sog is too. For patterns of a size large enout{w)z* will be small enough to obtain the desired
condition.

The main issue is the bounding from abovertf) on the circle of radiug. We noted = minge 4 74;
this value is positive (otherwise a letter would never occur) and giReell)" ™! = Pm*+1 —TI (remember
that PII = IIP = II andIIII = II), we have:

1
[P(2)] <= || Do (Pt —Tm)zn <3 Z [P e — Mgl [2]" (18)
n>0 k1 n>0
or 1
< = n+1 no< 2 1
~d Zb “dl-rp’ (19)
n>0

whereb andr are constants (independent of the pattern) with » < 1 andp such that-p < 1.

Let K be an integer and’ some radius satisfying Lemma 2, we asko be smaller thap’ so that
pp < 1 and|S,(z)] > aon|z| = p and forjw| > K. There existd("’ large enough such that for any
k > K" we verify the condition

oo (141405 ) < alo ) (20)
On a disk of such radiysand fork > max{K, K"}, the assumptions of Rouéls Theorem are satisfied,
consequently f + ¢)(z) = D,(2) has exactly as many zeros in the centered disk of ragdasf (=),
namely one zero, sincg,, (z) does not vanish.
Furthermore the assumptions of RoathTheorem are satisfied dn| = p for any pattern of size
larger thank’ := max{K, K"'}. So for anyw with |w| > K’, ©,,(z) has exactly one root within the disk
2] = p. 0

5.2 Computing residues

The use of Rouddis Theorem has established the existence of a single zero of smallest modulus for
D.,(z), we denote it4,,. We know by Pringsheim’s Theorem that, is real positive. Let als®,, and

C\, be the values of the first and second derivative® gfz) atz = A,,. We make use of a bootstrapping
technique to find an expansion fdr,, B,,, andC,, along the powers dP(w) and we obtain

P(w)
Sw(1)

By = —S8,(1) + P(w) [k:— F(1) -2

Ay =1+ + O(P?*(w)),

?”8” + O(P?*(w)), and (21)

Cy = —25,,(1) + P(w) {— gﬁg +h(k—1)—2F'(1) — 2kF(1)} + O(P%(w)).

We now compareD,,(u) and D¢ (u) to conclude that they are asymptotically close. We therefore
introduce two new generating functions

u

2l z
Qn(u) == (Dn(u)—D}(u) andQ(z,u) := Y nQn(u)z" = Y ul“'P(w (,DQ o

1—u
n>0 weA*

(1= (1 - P(w)))?

)
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We apply Cauchy’s Theorem 1Q(z, u) with z running along the circle centered at the origin whose
radiusp was determined in 5.1. There are only three singularities within this contour=a0, at A,,,
and at(1 — P(w))~. In order to justify the presence of the third singularity within the circle, we note
that the condition (20) implies
i br 1
P(w)p < P(w)p* < (pp)* <1 +(1+ p)d> <a(p—1)<(p—1), (22)

1—1rp

sincea is taken smaller than one. This— P(w))~! is smaller than the radiys
For anyw of a size larger thaik’, we have

el = gz [ P (570 - ) = RO @)
= Res(f(2);0) + Res(f(2); Ay) + Res (f(z), 1—1P(w)>
= nQn(u) + u"'P(w) (Res (zj;?u(z) Aw) - Res (zn+1(1 - 2(21 —Pw)?’ 1- ;(w)» ’

(23)

Sincez/(1—z(1—P(w))? is analytic atz = A,, it does not contribute to the residuefif-) at A,, and
can be discarded in the computation of the residue. The same is true fof@g 2) part in the residue
of f(z)atz =1/(1 — P(w)).

We compute the residue t, using the expansion we found fét,, andC,, through bootstrapping.
We setk = |w| to simplify the notation, and by a Taylor expansion ndarwe obtain

h—(n+1) wlono (W] = (n+1)  Cy
s (S ) = (Ml - ) e

In order to compute the residue at= (1 — P(w))~!, we use the general formula”](1 — az)~2 =
(n+ 1)a™ thus

1

= [z 1
(1 —2(1 - P(w)))?

Before we proceed to get the asymptotic behaviof)gf«), the following technical lemma is very
useful.

Lemma 4 For any functionf defined over the patterns o#, and anyy we have
3" Pw)f(w) <y + fraP{w e A" f(w) > y}),
we Ak
where f,... IS the maximum of over all patterns of sizé.

Proof: For the patterns of size with f(w) > v, fma iS @n upper bound of (w); the probability of the
other patterns is smaller than 1. O

We also note thas,,(p) < (1 —pp)~t andD,,(z) = O(p*) for |z| < p. Thus (details are omitted), we
obtain the following bound for the sum éf,(p, v) over all patterns of sizé:

> Lu(p,u) = O((5pu)*p™)

we Ak

There are only finitely many pattermswith |w| < K’; these terms provide a contribution of at most
O(B~ ") to Qy(u) for someB > 1.
We have just proved the following

Lemma5 For someg > 1, and for all|u| < 3, there exists3 > 1 for which we have

Qulw) =+ 3~ ulP(w) <A$’_"_1 (W - gé") (1~ P(w)>”‘1) +O(B™).
weA* w*rw w
(26)
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5.3 Asymptotic behavior of @Q,,(u)

Lemma 6 Forall 3suchthatl < 8 < §—1, there exists a positivesuch that),,(u) = O(n~°) uniformly
for all |u| < S.

Proof: Forn large enough, the dominant term in equation 26 is

A e o
Qu(u) = > ul"P(w) <82 — (1 =P(w))" 1) +0(n™1). (27)
weA* w
We introduce the function
Alplme=2 - 1 1
fuw(z) = Ti —(1-P(w)) A?u_‘wlej T 1z P(w) exp(—x),

and perform a Mellin transform (see Flajolet, Gourdon, and Dumas [2] for a thorough overview of this
technique) ory_  ul“IP(w)f,(x). It would have seemed natural to defifig(x) by its first term but

for simplicity’s sake we force & (x) behavior forf,,(x) near zero by subtracting some value. By an
application of Lemma 4, witly = (Ju|6)* for somes < 1, we prove that the sum is absolutely convergent
for |u| < . Hence the Mellin transforni* (s, «) of the sum is defined and we have

(o) — (logAy)™*  (—log(1 — P(w)))"* . _ w «
fa(s)=T(s) < A?D_lwIB,?U - I —Pw) ) andf*(s,u) = zw:u‘ 'P(w)f(s).

f*(s,w) is analytical within an open strip1 < R(s) < ¢ for some positive. In order to do so we
split the sum over all patterns into two parts.

For the patterns withs(s)P(w) small, we use an expansion §if (s) and then apply Lemma 4. We
make sure these patterns do not create any singularity. For anysgivere are only finitely many patterns
with S(s)P(w) large so their contribution to the sufii(s, ), although each is individually large, do not
create any singularity.

Therefore, we are able to take the inverse Mellin transforrfi¢$, «), and since there is no pole in the
strip we obtain the stated result. O

This last result is sufficient to prove our initial claim. By definitiyi (1) = D,,(1) = 1, thus we have

Q1) = (D0 - D) = (P =Del) - DaLI= DL
We haveD,, (1) = E(D,,) and(D!)’(1) = E(D},), therefore whem tends to 1 we obtain
E(D,) —E(D,) = O(n™), (29)

This means that asymptotically the difference between the two averages is no large(ithanfor some
positivee.

6 Conclusion

We have shown that the average depths of tries and suffix trees behave asymptotically likewise for a
Markov model of order one. This result can be extended to any order of the Markov model.

An extended analysis should yield analogous results for both the variance and the limiting distribution
of typical depth. A normal distribution is then expected for suffix trees.

In the future, we also hope to extend our results to the more general probabilistic source model intro-
duced by Valkke in [6].
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