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Analysis of the average depth in a suffix tree
under a Markov model
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In this report, we prove that under a Markovian model of order one, the average depth of suffix trees of indexn is
asymptotically similar to the average depth of tries (a.k.a. digital trees) built onn independent strings. This leads
to an asymptotic behavior of(log n)/h + C for the average of the depth of the suffix tree, whereh is the entropy
of the Markov model andC is constant. Our proof compares the generating functions for the average depth in
tries and in suffix trees; the difference between these generating functions is shown to be asymptotically small. We
conclude by using the asymptotic behavior of the average depth in a trie under the Markov model found by Jacquet
and Szpankowski ([4]).
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1 Introduction
The suffix tree is a data structure that lies at the core of pattern matching, used for example in the lossless
data compression algorithm of Lempel and Ziv [7]. Suffix trees are also utilized in bio-informatics to track
“significant” patterns. A thorough survey of the use of suffix trees in computer science can be found in
Apostolico ([1]). The average depth in a suffix tree of indexn + 1 is the average time (number of letters
read) necessary to insert a new suffix into a tree of indexn; an alternate interpretation is the average time
to discriminate between the current suffix and any previous one.

A device called asourceemits letters randomly, and independently of their emission date. In this
report, we focus on Markov sources of order one: the letter emitted at a given time is a random variable
obeying a Markov dependency of order one i.e., the distribution of each letter depends only on the letter
actually emitted immediately beforehand). Increasing the order introduces no new technical challenges—
computations only become more intricate—and our proof for a Markovian dependency of order 1 can
easily be extended to any source with greater Markovian dependency. We assume that the source is
stationary throughout this report. We denote the stationary probability vector asπ = (πi), the transition
probability matrix asP = (pi,j), and the probability the source starts emitting a text with the wordw as
P(w). We also introduce the stationary probability matrixΠ whose rows are the stationary probability
vectorπ. We make the usual assumptions that the underlying Markov chain is irreducible and aperiodic.

This paper focuses on the asymptotic behavior of the average depth in suffix trees. There are two
challenging parts in this study: first the suffixes on which the suffix tree is built are mutually dependent.
For example, if we just found the patternw = 0000 in the text, then it suffices to have the letter0 next,
in order to findw once more in the text. The trie (a.k.a. digital tree) is much easier to analyze than the
suffix tree, because the strings in a trie are independent from each other. The second challenge lies in the
probabilistic dependency between symbols (Markov model). The probability that a pattern occurs in the
text depends not only on the pattern itself but also on what was previously seen in the text.

In Jacquet and Szpankowski ([4]), inclusion-exclusion was used to obtain the asymptotics of the average
depth in an (independent) trie with underlying Markovian source. Therefore, it suffices for us to compare
the asymptotic average depths in suffix trees against that of independent tries (where the probability model
is Markovian in both cases). We prove that, for a Markovian source of order one, the average depth of a
suffix tree of indexn has a similar asymptotic behavior as a trie built onn strings.

In section 2, we present the main results of this paper. We give the precise asymptotics for the average
depth in a suffix tree with an underlying Markovian source. Afterwards, we give a sketch of the proof.
In section 3 we prove that the autocorrelation polynomialSw(z) is approximately 1 with high probability
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(for w of large length). To prove that suffix trees and independent tries have similar average depths, we
first derive bivariate generating functions forDn andDt

n in section 4. Then in subsections 5.1 and 5.2 we
analyze the difference between the generating functions forDn andDt

n by utilizing complex asymptotics.
Ultimately, we conclude in subsection 5.3 that the depth in a suffix tree has the same average up to the
constant term as the depth in a trie. Our method is motivated by the analytic approach of Jacquet and
Szpankowski ([3]) for the suffix tree under a memoryless (a.k.a. Bernoulli) source model. Our results are
proved in the more general context of Markovian sources.

2 Main Results
Consider a tree (say it’s binary and it shall be so throughout this paper) withn leaves numbered from 1
to n. The depthDn(i) of the leaf numberi is defined as the length of the path from the root to this leaf.
Pick one of then leaves at random (uniformly); thetypical depthDn of the tree is the depth of the picked
leaf. The random variableDn informs us about the typical profile of the tree, rather than its height (i.e.,
the maximum depth).

A trie is defined recursively on a finite setS of infinite words onA = {0, 1} as

trie(S) =


∅ if |S| = 0,
• if |S| = 1,
〈•, trie(S\0), trie(S\1)〉 else,

whereS\α represents the set of words starting with the letterα whose first letter has been removed.
In order to build a suffix tree, one needs as input an infinite stringT onA called text and an integer

n. We writeT = T1T2T3 . . . and thenT (i) = TiTi+1Ti+2 . . . denotes theith suffix of T (for example,
T = T (1), namely the entire string itself, is the first suffix). The suffix tree of indexn built onT is defined
as the trie built on the set of then first suffixes ofT (namely,T (1), . . . , T (n)). In the context of suffix
trees,Dn(i) is interpreted as the largest value ofk such that there existsj 6= i with 1 ≤ j ≤ n for which
T i+k−1

i = T j+k−1
j .

Our discussion in this paper primarily concerns the comparison of the average depths in suffix trees
versus independent tries. Throughout this discussion,Dn always denotes the typical depth in asuffixtree.
In a trie built overn independentstrings, we letDt

n denote the typical depth.
In [4], the asymptotic behavior of the average depth for a trie built onn independent strings under

a Markovian source of order 1was established using inclusion-exclusion. In this paper, we prove the
analogous result for suffix trees. Namely, we establish the asymptotic average depth for asuffixtree with
an underlying Markovian source. Our proof technique consists of showing thatDn andDt

n have similar
asymptotic distributions. To do this, we estimate the difference of their probability generating functions,
and show that the difference is asymptotically small.

In order to prove thatDn andDt
n have asymptotically similar averages, we first discuss the autocorre-

lation of a stringw. Since a stringw can overlap with itself, the bivariate generating functionD(z, u) for
Dn, whereu marks the depth andz the size, includes the autocorrelation polynomialSw(z). Fortunately,
with high probability, a random stringw has very little overlap with itself. Therefore the autocorrelation
polynomial ofw is close to 1 with high probability.

After discussing autocorrelation, we present the bivariate generating functions for bothDn andDt
n,

which we denote byD(z, u) andDt(z, u), respectively. We have

D(z, u) =
1− u

u

∑
w∈A∗

(zu)|w|
P(w)

Dw(z)2
and Dt(z, u) =

1− u

u

∑
w∈A∗

u|w|
zP(w)

(1− z + zP(w))2
,

(1)
whereD(z) is a generating function.

Our goal is to prove that the two generating functions are asymptotically very similar; it follows from
there thatDt

n andDn have the same average asymptotically up to the constant term.
In order to determine the asymptotics of the differenceD(z, u)−Dt(z, u), we utilize complex analysis.

From (1), we see thatDt(z, u) has exactly one pole of order 2 for eachw. Using Rouch́e’s theorem, we
prove that, for|z| ≤ ρ (with ρ > 1) and for sufficiently large|w|, the generating functionDw(z) has
exactly one dominant root of order 2 for eachw. ThereforeD(z, u) has exactly one dominant pole of
order 2 for eachw. We next use Cauchy’s theorem and singularity analysis to quantify the contribution
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from each of these poles to the differenceQn(u) := u(1 − u)−1[zn](D(z, u) − Dt(z, u)). Our analysis
of the differenceQn(u) ultimately relies on the Mellin transform.

We conclude from there that the averages of the depthsDn (in suffix trees) andDt
n (in independent

tries) are asymptotically similar. Therefore,Dn has mean1h log n plus some fluctuations. Specifically,

Theorem 1 For a suffix tree built on the firstn suffixes of a text produced by a source under the Markovian
model of order one, the average typical depth is asymptotically

E(Dn) =
1
h

(
log n + γ +

h2

2h
−H + P1(log n)

)
+ O

(
n−ε

)
, (2)

for some positiveε, whereγ is the Euler constant,h is the entropy of the Markov source,h2 is the second
order entropy,H is the stationary entropy andP1 is a function fluctuating around zero with a very small
amplitude. In particular

h := −
∑

i,j∈A2

πipi,j log pi,j and H := −
∑
i∈A2

πi log πi. (3)

3 Autocorrelation
The depth of theith leaf in a suffix tree can be construed in the language of pattern matching as “the
length of the longest factor starting at a positioni in the text that can be seen at least once more in the
text”. HenceDn(i) ≥ k means that there is at least another pattern in the textT starting withT i+k−1

i

While looking for the longest pattern inT that matches the text starting in positioni, there is a possibility
that two occurrences of this longest pattern overlap; this possible overlap of the patternw with itself
causes complications in the enumeration of occurrences ofw in a text. The phenomenon exhibited when
w overlaps with itself is calledautocorrelation.

To account for this overlapping, we use the probabilistic version of the autocorrelation polynomial. For
a patternw of sizek, the polynomial is defined as:

Sw(z) :=
k−1∑
i=0

[[wk−i
1 = wk

i+1]]P(wk
k−i+1|wk−i)zi. (4)

For simplicity, we introduceci = [[wk−i
1 = wk

i+1]] where[[.]] is Iverson’s bracket notation for the indicator
function. We say there is an overlap of sizek − i if ci = 1. This means that the suffix and the prefix of
sizek − i of w coincide. Graphically, an overlap of a pattern (white rectangles) looks like this:

,

where the two black boxes are the matching suffix and prefix. For examplew=001001001 has overlaps
of sizes 3, 6 and 9; note that|w| (here|w| = 9) is always a valid overlap since the patternw always
matches itself. We define aperiod of a patternw as any integeri for which ci = 1 (so a patternw often
has several periods), the minimal periodm(w) of w is the smallest positive period, if one exists (ifw has
no positive period forw, we definem(w) = k).

We now formulate precisely the intuition that, for most patterns of sizek, the autocorrelation polynomial
is very close to 1. It stems from the fact that the sum of the probabilitiesP(w) over all loosely correlated
patterns (patterns with a large minimal period) of a given size is very close to 1.

Lemma 1 There existδ < 1, ρ > 1 with ρδ < 1, andθ > 0, such that for any integerk∑
w∈Ak

[[|Sw(ρ)− 1| ≤ (ρδ)kθ]]P(w) ≥ 1− θδk. (5)

Proof: Note thatSw(z) − 1 has a term of degreei with 1 ≤ i ≤ k − 1 if and only if ci = 1. If ci = 1
the prefix of sizei of w will repeat itself fully inw as many times as there isi in k, hence knowingci = 1
and the firsti letters ofw allows us to describe fully the wordw. Therefore, given a fixedw1 . . . wi, there
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is exactly one wordwi+1 . . . wk such that the polynomialSw(z) − 1 has minimal degreei ≤ k. We let
p̃i,j = pwi,wj

, π̃i = πwi
, andp = max

1≤i,j≤2
(p̃i,j , π̃i). Then, for fixedj andk,

j∑
i=1

∑
w∈Ak

[[m(w) = i]]P(w) =
j∑

i=1

∑
w1,...,wi∈Ai

π̃1p̃1,2 · · · p̃i−1,i

∑
wi+1,...,wk∈Ak−i

[[m(w) = i]]p̃i,i+1 · · · p̃k−1,k

≤
j∑

i=1

∑
w1,...,wi∈Ai

π̃1p̃1,2p̃2,3 · · · p̃i−1,jp
k−i,

(6)

but we can factorpk−i outside the inner sum, since it does not depend onw1, . . . , wi. Next, we observe
that

∑
w1,...,wi∈Ai π̃1p̃1,2p̃2,3 · · · p̃i−1,i = ΠP i−11 = 1, so

∑
w∈Ak

[[Sw(z)− 1 has minimal degree ≤ j]]P(w) ≤
j∑

i=1

pk−i ≤ pk−j

1− p
,

and this holds whenj = bk/2c. So

∑
w∈Ak

[[all terms of Sw(z)− 1 have degree > bk/2c]]P(w) ≥ 1− pdk/2e

1− p
= 1− θδk. (7)

Remark that, if all terms ofSw(z)− 1 havedegree > bk/2c, then

|Sw(ρ)− 1| ≤
k∑

i=bk/2c

(ρp)i ≤ ρk pbk/2c+1

1− p
= (ρδ)kθ. (8)

We selectδ =
√

p, θ = (1− p)−1 and someρ > 1 with δρ < 1 to complete the proof of the lemma.2

The next lemma proves that, for|w| sufficiently large and for some radiusρ > 1, the autocorrelation
polynomial does not vanish on the disk of radiusρ.

Lemma 2 There existK, ρ′ > 1 with pρ′ < 1, andα > 0 such that for any patternw of size larger than
K andz in a disk of radiusρ′, we have

|Sw(z)| ≥ α.

Proof: Like for the previous lemma, we split the proof into two cases, according to the indexi of the
minimal period of the patternw of sizek. Since the autocorrelation polynomial always hasc0 = 1, we
write

Sw(z) = 1 +
k−1∑
j=i

cjP(wk
k−j+1|wk−j)zj . (9)

We introduceρ′ > 1 such thatpρ′ < 1. Therefore, ifi > bk/2c, then

|Sw(z)| ≥ 1−

∣∣∣∣∣∣
k−1∑
j=i

cjP(wk
k−j+1|wk−j)zj

∣∣∣∣∣∣ ≥ 1− (pρ′)i

1− pρ′
, (10)

in |z| ≤ ρ′. But sincei > bk/2c andpρ′ < 1, we get

|Sw(z)| ≥ 1− (pρ′)k/2

1− pρ′
. (11)

We observe that, for someK1 sufficiently large, any patternw of size larger thanK1 satifies|Sw(z)| ≥ α
and this lower boundα is positive.

We recall that ifci = 1, the prefixu of sizei of w will repeat itself fully inw as many times as there
is i in k i.e., q := bk/ic times, the remainder will be the prefixv of u of sizer := k − bk/ici, hence
w = ubk/icv. We also introduce the wordv′ such thatvv′ = u (of lengtht := i− r = i− k + bk/ici).
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If i ≤ bk/2c, we make the autocorrelation polynomial explicit:

Sw(z) = 1 + P(v′v|wk)zi + P(v′uv|wk)z2i + · · ·+ P(v′uq−2v|wk)zi(q−1)Suv(z). (12)

Overall, we can writeP(v′ujv|wk) = Aj+1 whereA = pwk,v′1
pv′1,v′2

. . . pv′t,v1 . . . pvr−1,vr
is the product

of i transition probabilities, but sincewk = vr we obtain

Sw(z) = 1 + Azi + (Azi)2 + · · ·+ (Azi)q−1Suv(z) =
1− (Azi)q−1

1−Azi
+ (Azi)q−1Suv(z). (13)

Then we provide a lower-bound for|Sw(z)|:

|Sw(z)| ≥
∣∣∣∣1− (Azi)q−1

1−Azi

∣∣∣∣− ∣∣(Azi)q−1Suv(z)
∣∣ ≥ 1− (pρ′)i(q−1)

1 + (pρ′)i
− (pρ′)i(q−1)|Suv(z)|

≥ 1− (pρ′)i(q−1)

1 + (pρ′)i
− (pρ′)i(q−1)

1− pρ′
.

We havepρ′ < 1 so that(pρ′)k tends to zero withk. Sincei(q−1) is close tok (at worsek/3 if w = uuv)
for someK2 sufficiently large and patterns of size larger thanK2, only the term(1 + (pρ′)i)−1 remains.
Finally, we setK = max{K1,K2}. 2

4 On the Generating Functions
The probabilistic model for the random variableDn is the product of a Markov model of order one for
the source generating the strings (one string in the case of the suffix tree,n for the trie), and a uniform
model on{1, . . . , n} for choosing the leaf. Hence, ifX is a random variable uniformly distributed over
{1, . . . , n}, andT a random text generated by the source, the typical depth is

Dn :=
n∑

i=1

Dn(i)(T )[[X = i]].

For the rest of the paper, thet exponent on a quantity will indicate its trie version.
Our aim is to compare asymptotically the probability generating functions of the depth for a suffix tree

(namely,Dn(u) :=
∑

k P(Dn = k)uk) and a trie (namely,Dt
n(u) :=

∑
k P(Dt

n = k)uk). We provide in
this section an explicit expression for these generating functions and their respective bivariate extensions
D(z, u) :=

∑
n nDn(u)zn andDt(z, u) :=

∑
n nDt

n(u)zn.
We first deriveDt

n(u). Each string from the set of stringsS is associated to a unique leaf in the trie. By
definition of the trie, the letters read on the path going from the root of the trie to a leaf form the smallest
prefix distinguishing one string from then− 1 others. We choose uniformly a leaf among then leaves of
the trie. Letw ∈ Ak denote the prefix of lengthk of the string associated to this randomly selected leaf.
We say thatDt

n < k if and only if the othern − 1 texts do not havew as a prefix. It follows immediately
that

P(Dt
n(i) < k) =

∑
w∈Ak

P(w)(1−P(w))n−1,

consequently

Dt
n(u) =

1− u

u

∑
w∈A∗

u|w|P(w)(1−P(w))n−1 and Dt(z, u) =
1− u

u

∑
w∈A∗

u|w|
zP(w)

(1− z + zP(w))2
,

(14)
for |u| < 1 and|z| < 1.

The suffix tree generating function is known from [5] and [3]: for|u| < 1 and|z| < 1

D(z, u) =
1− u

u

∑
w∈A∗

(zu)|w|
P(w)

Dw(z)2
, (15)

whereDw(z) = (1− z)Sw(z) + z|w|P(w)(1 + (1− z)F (z)) and for|z| < ||P −Π||−1,

F (z) :=
1

πw1

∑
n≥0

(P −Π)n+1zn


wm,w1

=
1

πw1

[(P −Π)(I − (P −Π)z)−1]wm,w1 . (16)
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5 Asymptotics
5.1 Isolating the dominant pole
We prove first that for a patternw of size large enough there is a single dominant root toDw(z). Then we
show that there is a disk of radius greater than 1 containing each single dominant root of theDw(z)’s for
anyw of size big enough but no other root of theDw(z)’s.

Lemma 3 There exists a radiusρ > 1 and an integerK ′ such that for anyw of size larger thanK ′,
Dw(z) has only one root in the disk of radiusρ.

Proof: Let w be a given pattern. We apply Rouché’s Theorem to show the uniqueness of the smallest
modulus root ofDw(z). The main condition we need to fulfill is that, on a given circle|z| = ρ,

f(z) := |(1− z)Sw(z)| > |P(w)zk(1 + (1− z)F (z))| =: g(z). (17)

The functionf is analytic since it is a polynomial,F is analytic for|z| < ||P−Π||−1 (where||P−Π||−1 >
1), sog is too. For patterns of a size large enough,P(w)zk will be small enough to obtain the desired
condition.

The main issue is the bounding from above ofF (z) on the circle of radiusρ. We noted = mina∈A πa;
this value is positive (otherwise a letter would never occur) and since(P−Π)n+1 = Pn+1−Π (remember
thatPΠ = ΠP = Π andΠΠ = Π), we have:

|F (z)| ≤ 1
d

∣∣∣∣∣∣
∑

n≥0

(Pn+1 −Π)zn


k,1

∣∣∣∣∣∣ ≤ 1
d

∑
n≥0

|[Pn+1]k,1 − [Π]k,1||z|n (18)

≤ 1
d

∑
n≥0

brn+1ρn ≤ br

d

1
1− rρ

, (19)

whereb andr are constants (independent of the pattern) with0 < r < 1 andρ such thatrρ < 1.
Let K be an integer andρ′ some radius satisfying Lemma 2, we askρ to be smaller thanρ′ so that

pρ < 1 and|Sw(z)| ≥ α on |z| = ρ and for|w| ≥ K. There existsK ′′ large enough such that for any
k > K ′′ we verify the condition

(pρ)k

(
1 + (1 + ρ)

br

d

1
1− rρ

)
< α(ρ− 1). (20)

On a disk of such radiusρ and fork > max{K, K ′′}, the assumptions of Rouché’s Theorem are satisfied,
consequently(f + g)(z) = Dw(z) has exactly as many zeros in the centered disk of radiusρ asf(z),
namely one zero, sinceSw(z) does not vanish.

Furthermore the assumptions of Rouché’s Theorem are satisfied on|z| = ρ for any pattern of size
larger thanK ′ := max{K, K ′′}. So for anyw with |w| ≥ K ′, Dw(z) has exactly one root within the disk
|z| = ρ. 2

5.2 Computing residues
The use of Rouch́e’s Theorem has established the existence of a single zero of smallest modulus for
Dw(z), we denote itAw. We know by Pringsheim’s Theorem thatAw is real positive. Let alsoBw and
Cw be the values of the first and second derivatives ofDw(z) atz = Aw. We make use of a bootstrapping
technique to find an expansion forAw, Bw, andCw along the powers ofP(w) and we obtain

Aw = 1 +
P(w)
Sw(1)

+ O(P2(w)),

Bw = −Sw(1) + P(w)
[
k − F (1)− 2

S′
w(1)

Sw(1)

]
+ O(P2(w)), and

Cw = −2S′
w(1) + P(w)

[
−3

S′′
w(1)

Sw(1)
+ k(k − 1)− 2F ′(1)− 2kF (1)

]
+ O(P2(w)).

(21)

We now compareDn(u) and Dt
n(u) to conclude that they are asymptotically close. We therefore

introduce two new generating functions

Qn(u) :=
u

1− u
(Dn(u)−Dt

n(u)) andQ(z, u) :=
∑
n≥0

nQn(u)zn =
∑

w∈A∗

u|w|P(w)
(

z|w|

D2
w(z)

− z

(1− z(1−P(w)))2

)
.
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We apply Cauchy’s Theorem toQ(z, u) with z running along the circle centered at the origin whose
radiusρ was determined in 5.1. There are only three singularities within this contour: atz = 0, at Aw,
and at(1 − P(w))−1. In order to justify the presence of the third singularity within the circle, we note
that the condition (20) implies

P(w)ρ < P(w)ρk < (pρ)k

(
1 + (1 + ρ)

br

d

1
1− rρ

)
< α(ρ− 1) < (ρ− 1), (22)

sinceα is taken smaller than one. Thus(1−P(w))−1 is smaller than the radiusρ.
For anyw of a size larger thanK ′, we have

Iw(ρ, u) :=
1

2iπ

∫
|z|=ρ

u|w|P(w)
1

zn+1

(
z|w|

D2
w(z)

− z

(1− z(1−P(w)))2

)
dz = u|w|P(w)f(w)

= Res(f(z); 0) + Res(f(z);Aw) + Res
(

f(z);
1

1−P(w)

)
= nQn(u) + u|w|P(w)

(
Res

(
z|w|

zn+1D2
w(z)

;Aw

)
+ Res

(
z

zn+1(1− z(1−P(w)))2
;

1
1−P(w)

))
.

(23)

Sincez/(1−z(1−P(w))2 is analytic atz = Aw it does not contribute to the residue off(z) atAw and
can be discarded in the computation of the residue. The same is true for the1/D2

w(z) part in the residue
of f(z) atz = 1/(1−P(w)).

We compute the residue atAw using the expansion we found forBw andCw through bootstrapping.
We setk = |w| to simplify the notation, and by a Taylor expansion nearAw we obtain

Res
(

zk−(n+1)

D2
w(z)

;Aw

)
= A|w|−n−1

w

(
|w| − (n + 1)

B2
wAw

− Cw

B3
w

)
. (24)

In order to compute the residue atz = (1 − P(w))−1, we use the general formula[zn](1 − az)−2 =
(n + 1)an thus

[z−1]
1

zn(1− z(1−P(w)))2
= [zn−1]

1
(1− z(1−P(w)))2

= n(1−P(w))n−1. (25)

Before we proceed to get the asymptotic behavior ofQn(u), the following technical lemma is very
useful.

Lemma 4 For any functionf defined over the patterns onA, and anyy we have∑
w∈Ak

P(w)f(w) ≤ y + fmaxP({w ∈ Ak : f(w) > y}),

wherefmax is the maximum off over all patterns of sizek.

Proof: For the patterns of sizek with f(w) > y, fmax is an upper bound off(w); the probability of the
other patterns is smaller than 1. 2

We also note thatSw(ρ) ≤ (1− pρ)−1 andDw(z) = O(ρk) for |z| ≤ ρ. Thus (details are omitted), we
obtain the following bound for the sum ofIw(ρ, u) over all patterns of sizek:∑

w∈Ak

Iw(ρ, u) = O((δρu)kρ−n)

There are only finitely many patternsw with |w| < K ′; these terms provide a contribution of at most
O(B−n) to Qn(u) for someB > 1.

We have just proved the following

Lemma 5 For someβ > 1, and for all |u| ≤ β, there existsB > 1 for which we have

Qn(u) =
1
n

∑
w∈A∗

u|w|P(w)
(

A|w|−n−1
w

(
(n + 1)− |w|

B2
wAw

− Cw

B3
w

)
− n(1−P(w))n−1

)
+ O(B−n).

(26)
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5.3 Asymptotic behavior of Qn(u)

Lemma 6 For all β such that1 < β < δ−1, there exists a positiveε such thatQn(u) = O(n−ε) uniformly
for all |u| ≤ β.

Proof: Forn large enough, the dominant term in equation 26 is

Qn(u) =
∑

w∈A∗

u|w|P(w)

(
A
|w|−n−2
w

B2
w

− (1−P(w))n−1

)
+ O(n−1). (27)

We introduce the function

fw(x) =

[
A
|w|−x−2
w

B2
w

− (1−P(w))x−1

]
−

[
1

A
2−|w|
w B2

w

− 1
1−P(w)

]
exp(−x),

and perform a Mellin transform (see Flajolet, Gourdon, and Dumas [2] for a thorough overview of this
technique) on

∑
w u|w|P(w)fw(x). It would have seemed natural to definefw(x) by its first term but

for simplicity’s sake we force aO(x) behavior forfw(x) near zero by subtracting some value. By an
application of Lemma 4, withy = (|u|δ)k for someδ < 1, we prove that the sum is absolutely convergent
for |u| ≤ β. Hence the Mellin transformf∗(s, u) of the sum is defined and we have

f?
w(s) = Γ(s)

(
(log Aw)−s

A
2−|w|
w B2

w

− (− log(1−P(w)))−s

1−P(w)

)
andf∗(s, u) =

∑
w

u|w|P(w)f?
w(s).

f∗(s, u) is analytical within an open strip−1 < <(s) < c for some positivec. In order to do so we
split the sum over all patterns into two parts.

For the patterns with=(s)P(w) small, we use an expansion off?
w(s) and then apply Lemma 4. We

make sure these patterns do not create any singularity. For any givens there are only finitely many patterns
with =(s)P(w) large so their contribution to the sumf∗(s, u), although each is individually large, do not
create any singularity.

Therefore, we are able to take the inverse Mellin transform off∗(s, u), and since there is no pole in the
strip we obtain the stated result. 2

This last result is sufficient to prove our initial claim. By definitionDt
n(1) = Dn(1) = 1, thus we have

Qn(u) =
u

1− u
(Dn(u)−Dt

n(u)) = u

(
Dn(u)−Dn(1)

1− u
− Dt

n(u)−Dt
n(1)

1− u

)
. (28)

We haveD′
n(1) = E(Dn) and(Dt

n)′(1) = E(Dt
n), therefore whenu tends to 1 we obtain

E(Dt
n)− E(Dn) = O(n−ε). (29)

This means that asymptotically the difference between the two averages is no larger thanO(n−ε) for some
positiveε.

6 Conclusion
We have shown that the average depths of tries and suffix trees behave asymptotically likewise for a
Markov model of order one. This result can be extended to any order of the Markov model.

An extended analysis should yield analogous results for both the variance and the limiting distribution
of typical depth. A normal distribution is then expected for suffix trees.

In the future, we also hope to extend our results to the more general probabilistic source model intro-
duced by Valĺee in [6].
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