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We consider a sequence ofgeometric random variables and interpret the outcome as an urn model. For a given
parametem, we treat several parameters like what is the largest urn containing at least (or exadibl)s, or

how many urns contain at least balls, etc. Many of these questions have their origin in some computer science

problems. Identifying the underlying distributions as (variations of) the extreme value distribution, we are able to
derive asymptotic equivalents for all (centered or uncentered) moments in a fairly automatic way.
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1 Introduction

Let us consider a sequencerofandom variables (RV), ..., Y,, distributed (independently) according
to the geometric distribution Gedm). Setq := 1 — p, thenP(Y = j) = p¢’~*. If we neglect the order
in which then items arrive, we can think about an urn model, with urns labgl@d. . ., the probability
of each ball falling into urry being given bypg’ 1.

Various questions arise about the distribution ofthialls into these urns. There is a large number of
interesting parameters that were studied in the literature, often because of a computer science application.
We will give a few examples. The number of the largest nonempty urn (“the maximum?” or “the height”)
was analysed in [18], see also [9]; it is related to a data structure called skip list (see [15]). This is a
list-based data structure that one may use instead of search trees.

Another parameter that appearspobabilistic counting[4] is the smallest index of a nonempty urn
minus 1, or the length of the largest sequence of nonempty urns (starting with urn 1). And, clearly, a
parameter that is between those two, is simply the number of nonempty urns. There are also several
generalisations around, involving a paramete(sometimes denotetlor d); like “how many urns are
there that contain at least balls.” The instancen = 1 refers then to the number of nonempty urns.

We would also like to emphasize thiateger compositionare closely related to the instanee- ¢ = %;
the probability that digit 1 occurs |§ that digit 2 occurs i§4, etc. The difference is that the sum of the
digits must ben, whereas normally we are interestedrirballs (or digits in this case). However, the
differences are minor, and we refer to [6] and the references therein.

In the present paper, we extend, generalise, and rederive many known (and unknown) results, using a
procedure that we will describe in a minute. As applications, we deal with the 3 parameters described (or
variants thereof), under the following assumptions. a) we deal with nonempty urns; b) we deal with urns
that contairexactlym balls and c) we deal with urns that contairieastm balls (which is a generalisation
of a). The intuition is as follows, say, far= g = %: About 5 balls will go into urn 1, about; into urn 2,
etc. For a while, every urn will be nonempty (or containn balls), then there is a sharp transition, and
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then the urns will be empty. So, in the instance b) (exaetlpalls in the urn), we can expect to see such
urns only in this (small) transition range.

It is that special situation with the sharp transition that makes the analysis of this paper possible. To be
more precise, we are dealing here with théreme value distributioand variants thereof. Once a few
technical conditions have been checked, the machinery developed in [6] applies, and we get asymptotic
forms of all the moments, as well as the centered moments and asymptotic distributions. As it often hap-
pens in these type of problems, there are periodic fluctuations (oscillations) involved. The approximations
obtained from the extreme value distribution, together with the Mellin transform, establish the fluctuations
in the form of Fourier series. After several preliminaries have been discussed, what remains is to a large
extent mechanical, and here computer algebra (Maple) comes in.

Several subsections where derivations and reasonings are similar to others, are brief and sketchy, in
order not to make this already long paper longer than necessary.

Note that, in [8], Karlin obtained some interesting results on similar topics, including some non-
geometric RV.

Here is the plan of the paper: Section 2 sets up the general framework; Section 3 is a continuation of
it, dealing with fluctuations. Then we come to the discussion of multiplicities: Section 4 deals with mul-
tiplicity at least 1, Section 5 with the number of distinct values (number of urns). Section 6 is concerned
with multiplicity at leastm, and Section 7 contains a few final remarks.

2 The general setting

We will use the following notations:

~ := asymptotically n — oo,
m := the fixed multiplicity (an integer value)

*:=mnp/q,
Q:=1/q,
L:=InQ,
log := log,,
a:=a/L,
B(U,Z) — (Z) (pqz—l)v(l _pqv 1)n u,
T() = 3 Bli.j).
1=0
evan
g(”ﬂ]) = exp(ieiLn)Tv
R(j,n) := - %(n ') exp(—n*g’)
=0
g(n) = - 9(i,n)
=0
gt
_pbq
(@r=01-91-¢"...(1-¢),
K := (Q)oo

The following facts will be frequently used:
(1—uw)"<e ™, wuwelo,1],

(I—u)"=e ™[l -nu?/2+O0(mnu?®)], uwelo,l],
(1—uw)"=[1-nu+n(n-1)/2u>+O0(nu®)], we]o,1/n[,
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(’7) Wi (1 —w)" = (nu)’ e;:m [1+0(1/n) + O(u) + O(nu?)] ,u €]0,1[, i fixed

1
this is the Poisson approximation

For all discrete RVY,, analyzed in this paper, we set
p(j) =P, =), P@) =P, <))

We will either sety = j —logn orn = j —log n*, depending on the situation. After all, there is not much
difference; only a shift by a constant amouwy(p/q). We will first computef and F’ such that

and, of course,
f(n)=F(n)—-Fn-1).

Asymptotically, the distribution will be a periodic function of the fractional partogfr.. The distribution

P(j) does not converge in the weak sense; it does, however, converge in distribution along subsequences
n., for which the fractional part dbg n,, is constant. For instance such subsequences e@sﬁfnl/ nz
ny, ng integers.

Next, we must show that
ZJ p(§) ~ Y (n+logn*)¥[F(n) — F(n —1)], (2.1)
j=1 Jj=1

by computing a suitable rate of convergence. This is related to a uniform integrability condition é&sex Lo
[11, Sec.11.4)).

Finally we will use the following result from Hitczenko and Louchard [6] related to the dominant part
of the moments (the™’ sign is related to the moments of the discrete RYJ.

Lemma 2.1 Let a (discrete) RW,, be such that’(Y,, — logn* < n) ~ F(n), whereF(n) is the dis-
tribution function of a continuous R¥ with meanm;, second moment., variances? and centered
momentsgy,. Assume thaf'(n) is either an extreme-value distribution function or a convergent series of
such and that (2.1) is satisfied. Let

e k
«
pl0) =B(e2?) = 143 Somic = ™™ A (),

say, with
2 & k

e e
=1+ %0+ T
AMa) + 50 —|—k:3 o e

Letw, k’s (with or without subscripts) denote periodic functiond@fn*, with period1 and with small
(usually of order no more than0—%) mean and amplitude. Actually, these functions depend on the frac-
tional part oflogn*: {logn*}.

Then the mean df), is given by

+oo
E(Y, —logn™) ~ /_ z[F(z) — F(z — 1)]dz + uwn

:T7L1 + wy, with ﬁuzml—i—%.

More generally, the centered momentspfare asymptotically given by; + «;, where
= ZO];— —§1nh(%))\(a).
k=2

The neglected part is of order/n” with0 < 5 < 1.
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For instance, we derive

fr= =t =
M2 = = M2 12’
/73:/’637

~ +02+1
Ha = Ha 7 T gy
~ 5
/~L5=/~L5+6/~L3~

The moments of;,, — logn* are asymptotically given by; + w;, where the generating function oi;
is given by

e* —1
—

o(a) == /OO e f(m)dn =1+ %ﬁ% = ¢(a) (2.2)
e i=1

This leads to
ml =m1 + 57

%2:m2+m1+§7

ms =m3+;m2+m1+i§
w; andk; will be analyzed in the next section. Note that
O(a) = ¢p(a)e™ ™,
This leads to
fig = My — i,

/73 = msg + 2777/‘;’ — 3mam,.

3 The fluctuating components in the moments of Y,, — log n*

To analyze the periodic componemnt to be added to the moments; we proceed as in Louchard and
Prodinger [13]. For instance,

[e.°]

E(Y,, — logn™) E(l) Z (j —logn™) — F(j —logn™ — 1)][j — logn™]. (3.2)
Jj=1
Sety = @~* andG(y) = F(z). Equation (3.1) becomes

o0

EW(n) =Y "[G(n/Q’) = G(n/Q)][~log(n/Q)],

Jj=1

the Mellin transform of which is (for a good reference on Mellin transforms, see Flajolet et al. [3] or
Szpankowski [17])

Qs *
?@Tl(s), (3.2)
and
Ti(s) = /Ooo v G(y) — Gly/Q)][—log yldy = /:X) Q™ [F(z) — F(z — 1)|zLdx.
Then

Yi(s) =L ¢'(a)]qe_ps - (3.3)
The fundamental strip of (3.2) is usually of the foene (—C1,0), C; > 0. Set also

To(s) =L o(a)]g=—rs, Tol0) = L.
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We assume now that all poles Q%T*{(s) are simple poles, which will be the case in all our examples,
and given bys = 0, s = x;, with x; := 2lwi/L, 1 € Z \ {0}. Using

EM(n) = 1 / e @ Yi(s)n~%ds, —C; <Cy<0
271 Cy—ico 1-— QS ’ ’

the asymptotic expression af 1) (n) is obtained by moving the line of integration to the right, for instance
to the linekRs = Cy > 0, taking residues into account (with a negative sign). This gives

EM(n) = —Re iT* s)n—?° - Re i'r* s)n~? + O(n~%).
() = —Res = Xitomn ]| > Yo g i) +om
The residue at = 0 gives of course
_ Ti(0
i = 10— )
The other residues lead to )
_ * —2lmilogn
w1 =7 %Tl()g)e e, (3.4)

More generally,
E(Y;, — logn*)* ~ my, + wy,
with )
we = 7 0 Thla)e 8
1#£0
and
Ti(s) = L V(o)

a=—Ls '

The residue analysis is similar to the previous one.
To compute the periodic componentto be added to the centered momeitswe first set

my = my + w;.

We start from
e*—1

«

o) =14 Trii = ola)
k=1

We replacen by m; + wy, leading to
op(a) = ¢(a) + Z o1 k-
k=1

But sinceg(2{7i) = 0 for all [ € Z, we have

Z d)(_LXl)eleﬂ'ilogn =0,
1740

and so

k

—2lmi logni

e
a=—Lx; k!

$p(@) = d(a) +) Y ¢"M(a)

k=0 1£0

— gb(oz) + Z¢(a _ Lxl)672lﬂ'“0gn (35)
1£0

_ Z¢(a o Lxl)672l7rilogn'

leZ
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Finally, we compute

o0 k e k
O,(a) = gp(a)e ™™ =1+ ,; i+ i) = ©(a) + kg S (3.6)

leading to the (exponential) generating function (GFjpf This leads to

Ko = W2 — wf — 27711101,
K3 = Gﬁﬁwl + 6771110% + 2’LU:1)) — 3mowy — 3Miwe — 3wiwy + ws.
All algebraic manipulations of this paper will be mechanically performed by Maple. We will give
explicit expressions fofia, k2, 13 andks.

It will appear thatl; (s) are analytic functions (in some domain), depending on classical functions such
as Euler'sI” function. But we know thal'(s) decreases exponentially towartisoo:

IT(0 +it)| ~ V2r|t|7~1/2eIH/2, (3.7)

and all our functions will also decrease exponentially towardso.

4 Multiplicity at least 1

As in Hitczenko and Louchard [6] (where the case 1/2 is analyzed), we can check that, asymptotically,
the urns become independent.
Set the indicator RV (in the sequel we drop thepecification to simplify the notations):

X; := [valuei appears among theRVs].

4.1 Maximal non-empty urn

The maximal full urn index
M :=sup{i: X; =1}

is such that _ v

P(j):=PM<j]=(1—¢)" ~e .
With n = j — log n, we obtain

P(j) ~ F(n),
with
F(n) = exp(—e ).

This is exactly the same behaviour as in the case analyzed in Louchard and Prodinger [13, Sec-
tion 4.1], where the rate of convergence is already computed. We note that the distribution is concentrated

on the range) = O(1), i. e., in the concentration domajn= logn + O(1).
From [13, Section 5.1], we derive the moments\éf— log n:

v, 1
ml_L+27
N_i+i
H2=%2 T 12
~2((3)
u3 = e

wherey is Euler's gamma constant. Let us now turn to the fluctuating components. We havg hgre
I'(1 — &). The fundamental strip foris R(s) € (—1,0). First of all, (3.3) and (3.4) lead to

1 ot
wy = _E ZF(Xl)e 2wilogn
1#0

¥ Here we use the indicator function (‘lverson’s notation’) proposed by Knuth et al. [5].
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Next we obtain

— _QM _ Zl" Xl —2[7rilogn’
1#0
K3 = (7 + 7) ZF Xl Xl —2lmilogn L3 ZF Xl —2lmilogn
1#0 1#0
1“ 1 —2lmilogn 2 3 (672 - 7T2)w1 6’7'[0%
32 Oa)y(L, xae + 2w7 + 52 + 7

10

wherey is the digamma function (logarithmic derivative of theunction) andy(1, z) is the trigamma
function.

4.2 Number of distinct values

o0
This is actually a measure of distinctness. Set= Y X;.

=1
We can now proceed as in Louchard and Prodinger [13, Section 5.8]. We don't consider the rate of
convergence here: this will be computed in Section 6.1, in a more general setting. Note that

i—1 I

P(X;=0)=(1—pg )" ~e ™I =4

if we set, as alwaysy* = np/q.
This leads, for the moments &f — log n*, to

~ v 1

=7y

wy = P11,

po = log 2,

i3 = —3log2 + 2log 3,
=12 — B,

k3 =2B1,3 —3B1,2 + P11,

with )
ﬁl,k _ _E Z F(Xl)elem log(n k).
10

Note the presence df in the exponent. Note also that the variance has here a periodic component,
contrariwise to the case = 3: We have thaty(z) = £1,1(z + log2) — B1,1(z), and this is zero for
@ = 2, because of the periodicity 1. The first two moments are given in Archibald, Knopfmacher and
Prodinger [1]; the cancellation fgr= ¢ = % was noticed therein, see also [14]. In [8], Karlin mentions
that the mean oX “could oscillate irregularly,” but does not give an expression, even in the geometric
case. In his Theorertf, he provides théog n dominant term of£(X), and in Sectiorg.lll, he givesjis,
113, mentioning that “the distribution oX is difficult to identify.”

Actually, the asymptotic distribution of can be adapted from Hitczenko and Louchard [6]. We obtain
the following result:

Theorem 4.1 Setn := j — logn* and

Uy () i=e® " ﬁ {1 - e’e_L(n_i)] .

=1
Then, withj € Z andn = O(1),

—L(n+r;)

]P(X Z \If —u + e~ Lnt+i- ")/(Q 1) Z H 1— eiL(nJr7 ’

r<-<ruy =1
r>2u

P(X <j)~F(n),  with F(n):=Zf(n—i)-
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4.3 First empty urn
SetE :=inf{i: X; = 0}.
Again, we start from [13, Section 4.8]. Setting

AG) =] -0 =pg "<,

i=1

we obtainP(j) ~ 1 — A;(j). We have

n=j—logn”,
p(j) ~ (1 —pg )" A1(j — 1),
a(n) i= [ [1 — exp(—e 200
k=0
F(n) :=1-Vy(n),
f(n) == ¥i(n).

The rate of convergence is fully analyzed in [13] in the gase1/2. The analysis is similar here. Also, in
this casep = 1/2, from [13, Section 5.9.1], we first define the entire functi@is) which is the analytic

continuation of
Z (_1)V(j)

S
=

wherev(j) denotes the number of ones in the binary representatignTiis gives

N(0) = —1,

N'(0) = —.4874506. . .,
N"(0) = .8433214.. .,
N"'(0) = —.8683385.. ..

We obtain the moments & — logn* for p = 1/2:

SN 1
1= L 27
_ 1 5 o 1
[is = GF( —6N'(0)* + 7> — 6N"(0)) + oL
_ 2¢(3
fiz = (2N'(0)® + 3N"(0)N'(0) + N""(0) + L(3 ).
Let us now turn to the fluctuating components:
1 S
w =7 ZN(XZ)P(Xl)efmﬂﬂogn .
140
2 —2lmilogn™
Ky = —wi — Iz D INC O+ N'(0) + N' () + N ()b ()] T (xa)e 2 oe ™

1#£0

Next we obtain

ks = 3 {BE(L )N ()/LP + 00BN () /L2 + 6N () /L + 6N () + V' (0)/L7]
10
+ 3N (x)v? (xa)/L? + 3(2(N'(0) + )N’ (1) + N//(Xl))/LS}F(Xl)e—mm1ogn*

+ 6w, Z N/(XZ)F(Xl)e—Zlﬂ-ilogn* /L2
10
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2

6w
2L2 L (692 + 12yN'(0) — 6N"(0) + L2 + n%) — Tl (v + N'(0)) — dw?.

In the case # 1/2, we follow the lines of Sections 2,3, and we define (we have no explicit form here)

o) = [ o; e (n)dn =~ [ Z e F (7).

This leads to
- 1 ,
my = 5 + 2 (0)7
wy = Z @(LLXl) —2lmilogn ’
120 X1
- 1
fio = 75— s0’(0)2 +¢"(0),
=2¢'(0 3@ "(0)¢'(0) +¢"(0),
|: LXl (—LXl) + 290(_LX1):|6—2l7rilogn*
e Ly, L2x3
—L L '(—L
[330 Xt) 3<p( Xl)+690(2 2?cz)
120 Lx; L Xi
<P( sz) ( Lxi)) | . P(=Lx1)]| —atritogn*
L2 2 + 6 L3X? e g ,
Ko = —wp — 2<p (O)w1 —w? + wy,

Ky = 2w — 3wa + wsy + 3¢’ (0)w; + 3wi + 6¢'(0)*w

+ 6" (0)w? — 39" (0)w; — 3¢ (0)wy + 2w} — Jwiws.

Alternatively, we could start from

oo

b(a) == / € f(m)dn

— 00

5 Multiplicity exactly m
We consider fixedn = O(1). Set

Xi(n) := [valuei appears among the GEOM(p) RVs with multiplicity m].
ThenP[X;(n) = 1] = B(m, j), with

n

B(m, j) 12( )(qu_l)"L(l e

m

We immediately see that the dominant range is given by logn + O(1). To the left and the right of
this rangeP[X;(n) = 1] ~ 0. Within and to the right of this rang®[X;(n) = 1] is asymptotically
equivalent to a Poisson distribution:

PIX; () = 1] ~ (") expl(—n"?). 51)

Setting agaim := j — log n*, we deriveP[X;(n) = 1] ~ g(m,n), with

efLmn

o _,—Ln
g(m,n) = exp(—e )7m!
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5.1 Number of distinct values
SetX(n) := > X;(n). We must first check the asymptotic independency of the urns. Let us consider
i=1

II,(2) = E(2X(™). We are interested in the behaviourldf (z) for complexz € D (1) = {t| |t — 1] <
e}, wheree is a small fixed positive real number. We choese 0 such that := log(1 + €) < 1.

Theorem 5.1 We have

it 1 . 1 .
. (z) = [ [ {(1 B m(n*ql)mew ql) + Zﬁ(n*ql)me’" 1 +0mh), n— oo
1 ! !

uniformly forz € D.(1), where0 < ¢ = log(1 +¢) < 1.

Proof
We use an urn model, as in Sevastyanov and Chistyakov [16] and Chistyakov [2], and the Poissonization
method (see, for instance Jacquet and Szpankowski [7] for a general survey). In the above formulation,
we have dixednumbern of geometric random variables, each corresponding to a ball. The value of each
RV denotes the bin into which the ball is placed. For instanck, & 3, then the first ball is placed into
the third bin.

In order to utilize the Poissonization method, instead of usifige@l number of balls, we us#& balls,
where N is a Poisson random variable wile(N) = 7. It follows that the urns aréndependentand
the number of balls in urhis a Poisson random variable with parameteg’. We use a = to denote
that we are working in the Poissonized model. For instad€y;) denotes théth GEOMp) RV in
the Poissonized model, i.eX; () corresponds toX;(n). It follows that urni has exactlym balls with

probability L, (r*¢))™e~""7". So the generating function of; (7) is

m!

5 1 .y 1 1 1 w1
Xi(m)y — _ * I\m _—7%q * Iym _—1%¢" _ . * _I\m _—1*q
B(N0) = (1= = (rq) e @ ) 42— () "e " = 14 (= ) (rq)"e 77

m!
We haveX (1) = 37°, X;(), and thus
G(r,2) == B(zX() = B(zZX1(M),

Since the urns are independent in the Poissonized modelfthéa~: (")) = [[>°, E(zX:()). Thus

oo

G(T,Z)zH[l—F(z—l) !

m!
=1

w1

(r"g")"e 79| (5.2)

We writeT = Re' forreal R > 0 and—n < t < «. Thus|7r| = R. We denote the linear cone containing
all 7 with —mr/4 < ¢t < w/4asS,;y = {r = Re' | —m/4 <t < w/4}. Now we derive asymptotics about
the growth of G(r, z)| for € S, /4. Our estimates are valighiformlyfor z € D (1) = {t | [t — 1| < €}
We encapsulate our results in the following lemma.
Lemma5.2 For 7 € S, /4, there exist reals3 > 0, Ry > 0, and0 < ¢ < 1, such thatifir| = R > Ry
then

|G(7,2)| < B||°

uniformly forz € D.(1).
Proof We first considel > 1 + log R. We have

* 1

[ ecom- T1 fe-nbedrer

[>1+log R [>1+4+log R
1 I—1\m —?R(T)pq171
< I [t+e (g me |
[>1+4+log R
1
=TI [1+e;50ripayme o]
I>log R :

—op( X m[t+ e ey mo])

[>log R
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Sexp< > [en{b!(flpql)mem’pqlD (5.3)

1>log R

where the inequality holds sin¢e(1 + =) < x for realz. We note that-R(7) < 0 sincer € S, /4. Thus
e~ RMrd” < 1. It follows that

X T 1 m
[T IR <o (el 3 @)
1>1+log R [>log R
log R\m

< exp ( 1 (|r[pgs )™ )
m)! 1 —qm
1

< exp (e— ) sincege = R=! = |7| 7!
mll—

=0(1) (5.4)

Now we considef < log R. We have

IT [BEE)| < T (4 < @+ oot = Bos+) — o
I<log R I<log R

Combining these results, we hal@(r,z)| = O(1)|7|¢ = O(|7|¢) uniformly for z € D.(1). This
completes the proof of the lemma. [ |

We return to the proof of Theorem 5.1. The lemma we just completed shows that condition () holds for
Theorem 10.3 of [17]. Now we prove that condition (O) of Theorem 10.3 of [17] holds too, namely: for
T ¢ Sx/4, there existd anda < 1 such thaG(r, z)e™| < Aexp(al7|) for || > Ro.

First considerr ¢ S, /4 with (7) > 0. Then the same proof given in the lemma above shows that
|G(7,2)| = O(]7|°) uniformly for z € D(1). Thus|G(r, 2)e™| = O(|7]|%e®™)), andR(7) < |7|/+/2 for
theser’s, so by settingy = 1/1/2, we conclude that condition (O) holds for¢ Sr/aWith R(7) >0

Now we consider with i*(7) < 0. By (5.3), we see that

II |E(z&l(7))’§eXP< > [ﬁnz(lTlpql)mewf)”qlD.

1>1+log R 1>log R

Note thate=R(Mpd' < ¢=R(MPR™" — c=PR(/I7l < ¢p for all r with R(r) < 0 and alll’'s with [ >
1+ log R. So, proceding with reasoning similar to (5.4), we again see that

[T [ECKT) =o0q.

1>1+log R

AISO [ ;<10 & [E(z¥17)| = |7|° as before. S¢G(r, 2)e™| = O(|r|€™™)) = O(|r|) sinceR(r) < 0.
Thus, anyx with 0 < a < 1 is sufficient to satisfy condition (O) wheR(7) < 0.

We conclude that: = 1/+/2 is sufficient to satisfy condition (O) when¢ Sr/4-

Therefore, conditions (I) and (O) of Theorem 10.3 of [17] are all satisfied, so we can depoissonize our
results, i.e.J1,,(z) andG(r, z) have the same asymptotics. More precisely,

I, (2) = G(n, z) + O(n°1).

Substitutingr = n within (5.2), we see that

i 1 1
_ _ m_—n*q m_—n* q
¢ =11 [(1 — ()T ) 42 (g )me
and we note thal < ¢ < 1, so this completes the proof of Theorem 5.1. |

Theorem 5.1 confirms the asymptotic independence assumption.
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The moments can be derived as follows. We obtain, settinge®,

In(IT,,) ~ Sa(s) = Zln 1+ (e’ —1)B(m,1)]
=1

> i+1 _
= (D)™ — 'V , With
1

7

Vii=> [B(m,D)].

M L

Il
A

Let us first check that we can replace the Binomial by a Poisson distribution (see (5.1)) by computing a
suitable rate of convergence. We will consider three rangesl 12k § < 1.

e Forj < Blogn*, B(m,j)* is small. Indeed
B(m, j)* < [n*meXp(—n*l_ﬁ)/m!]k
e Forflogn* < j < 2logn* we have

B(m, j)* — gm,n)* ~ [g(m,n)[1 + O(1/n*) + O(1/Q7) + O(n* /Q*)]]* = g(m,n)*
= (’)(l/n*%_l).

e Forj =2logn* + z,x > 0, we have
k
B(m. j)* = glm,m)* ~ |g(m,n)[1 + O(1/n") + O(1/n" ) + O /n* ]| = glm,n)*

= O/ Q™" /n*,

as

g(i,n) = O[1/(n*Q")'].

\z (m.j) — g(m,m)"]

which leads immediately t®(1/n*26~-1=¢), ¢ small > 0.
SoV; is given by a harmonic sum, which we will compute by the Mellin transformySetQ " and

Now we must bound

9(y) = [g(m,n)]",

the Mellin transform of which is

. T(mk+ s)
9" (s) = kmhts (m)k
This leads to
g (s) 2
1-Qs’

with fundamental strig(s) € (—mk, 0). We obtain, by residues,

Vi ~ B; + fi(logn),

with
_ (km —1)!
Bk - mlk Lkkm’
_ F(Xl + mk) —2lmilog(n*k)
Bl = 2 Lk Gty © '
140

Note again the presence bin the exponent.
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The centered moments &f can be obtained by analyzing
S3(s) := exp(Sz(s) — sV1);

and finally, the moments are given by

my = Bh
w1 = ﬂl»
= B1 — By,
i3 = By — 3By + 2Bs3,
ko = [ — P,
= 1 — 302 + 205.
The asymptotic distribution ok can be derived from Louchard [12]. This leads with
W3 (n) = g(m, n) H glm,n— )],
=[]0 —g(m,n+35)
7=0

to the following result.
Theorem 5.3 Sety(n*) := logn* — [logn*|, then

P(X =u+1)~ Y W5(l—1)(n")),

l=—00
with
Us(n) = Ua(n— DTu(n) > H{ (mon+wy) /[1 = glmn+w)]| }.
W1 SWe > >wWw,, >0i=1

Note that, contrariwise to the previous section, theZRVs hereO(1) in the sense that we do not have to
normalize bylog n*.

5.2 Maximal non-empty urn
We derive, by asymptotic urn independence,

p(j) == B(M = j) ~ B(m,j) ] 1t = Blm,)
Al
PG)~ [] - B(m,i)]
i=j+1

This leads to

p(j) ~ f(n) = g(m,n)W4(n+1),
P(j) ~ F(n) = Wyu(n+1).

We have here product forms: the rate of convergence for this kind of asymptotics is fully detailed in
Louchard and Prodinger [13]. We can now proceed as in Section 4.3.

5.3 First full urn

SetE :=inf{i: X; = 1}.

Note the difference with Section 4.3, where we were concerned by the first empty urn; that question
would not make sense here since the first ‘empty’ yénrgp elements) would be urn 1 with very high
probability.
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We obtain
j—1
p(§) ~ B(m, j) [[11 = B(m, )],
=1
P(j) ~1 =[]0 = B(m, )
This leads to

p(j) ~ f(n) = ¥3(n),

oo

P(j)~F() =1~ ][]~ glmn—j)].
j=0

We can now proceed as in Section 4.3. We don't give more details here.

6 Multiplicity at least m
We again consider fixeth = O(1). Set

X;(n) := [valuei appears among the GEOM(p) RV with multiplicity at leastm].

We have L
P[X;(n) = 0] = T(j) := Y _ B(i, ).
1=0
Again, in the range given by > log n* we can use the Poisson approximation:
P[X;(n) =1] ~1— R(j,n), (6.1)
with
R(j;n) := (n*¢)" exp(—n*¢’).

Setting agaim := j — log n*, we deriveP[X;(n) = 1] ~ 1 — g(n) with

6.1 Number of distinct values
SetX(n) := > X;(n). We must first check the asymptotic independency of the urns. Let us consider
=1

II,,(z) = E(2X(™). We are again interested in the behaviouFTgf z) for complexz € D(1) = {t | |t —
1] < €}, wheree is a small fixed positive real number. We choese 0 such that: := log(1 + ¢) < 1.

Theorem 6.1 We have
IL,(2) ~ | | [R(I,n) + 2(1 = R(l,n))], n— oc.
1=1

uniformly forz € D.(1), where0 < ¢ = log(1 +¢) < 1.

Proof
We again use the urn model. As before, we replacéditeelnumbern of balls with N balls, whereV is a
Poisson random variable witl( V) = 7. Thus, the urns aredependentand the number of balls in uin
is a Poisson random variable with parametgy’. Again we use a™” to denote the Poissonized model.
It follows that urni has exactlyi balls with probability%(r*ql)ie‘f*ql. So the generating function of
X(r)is

E(zXM) = R(l,7) + 2(1 = R(l,7)) =1+ (2 — 1)(1 — R(I, 7).
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We haveX (1) = 3°7°, X;(r), and thus
G(r,2) = B(zX() = B(zZ X1(7),

Since the urns are independent in the Poissonized modelfthéaX:()) = [ E(zX1(")). Thus
=1

G(r,2) = [1 + (= (1 = R(I,7))]. (6.2)

=1

We again writer = Re’ forreal R > 0 and—7 < ¢ < «. Thus|r| = R. We again consider the linear
coneS, /s = {r = Re'" | —m/4 <t < m/4}. Now we derive asymptotics about the growth G{r, z)|
for 7 € S, /4. Our estimates are valighiformlyfor = € D.(1) = {t | |t — 1| < ¢}. We encapsulate our
results in the following lemma.

Lemma 6.2 For 7 € S, 4, there exist reals3 > 0, Ry > 0, and0 < ¢ < 1, such thatifir| = R > Ry
then

|G(,2)| < B|r|°
uniformly forz € D.(1).
Proof We first considet > 1 + log R. We have

I [ECE) = [ 1+@E-10-REn)

I>1+log R 1>1+log R
0o
1 * INi —1%¢t
= H 1+(z—1)z,7(7q)e
1!
1>1+log R i=m

Il IA
| —|
—_
+ —
o +
Mg .
S\
—~
Sl
S 3
N> hS]
. Q
Ch‘ -
8 N
= =
<8 [
< B
[ (“
35
QN
|
LT

where the inequality holds sinée(1 + =) < x for realz. We note that-%(7) < 0 sincer € S; /4. Thus
e~®(Mrd' < 1. It follows that

H ’E(zgl(ﬂ)‘gexp €
1>14log R

> 2 3 @)

m [>log R
Z 1 (|7lpg'e ")
AV R

) sincege f = R~! = |7| 7!

CS ) simeel/0-g) <1/0-g)
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Now we considel < log R. We have

11 ‘E(Z’}L(T))‘S [T (146 < (1+e)sR = Rost+0) — e
I<log R I<log R

Combining these results, we hal@(r,z)| = O(1)|r|© = O(|7|°) uniformly for z € D.(1). This
completes the proof of the lemma. [ |

Now we return to the proof of Theorem 6.1. The lemma we just completed shows that condition (I)
holds for Theorem 10.3 of [17]. Similar reasoning as in Theorem 5.1 shows that condition (O) holds too,
namely: forr ¢ S /4, there existsA anda < 1 such thatG(7, z)e™| < Aexp(al7|) for [7| > Ry.

So the assumptions of Theorem 10.3 of [17] are all satisfied; therefore, we can depoissonize our results.
In other words]I, (z) andG(r, z) have the same asymptotics. More precisely,

,(2) = G(n,z) + O(n°1).

Substitutingr = n within (6.2), we see that

G(n,z) =

3

[R(l,n) + 2(1 = R(l,n))],

1

and we note thal < ¢ < 1, so this completes the proof of Theorem 6.1. [ |

Theorem 6.1 confirms the asymptotic independence assumption.
Now with asymptotic independence of the urns representing each integer,

oo oo _1\I+1
E(e“X) ~ exp [Zln (1+ (e* —1)(1 - T(j)))] = exp {Z ( 11) . (e* — 1)V,

with . N h
V=3 (1-70)
We obtain a
Vi i { §<—1>k(é)T<j>k}
_ i { k;(‘”’“(;i)“j)‘“ - ; ()0
_ g (li)( 1)¥+15,, with

First of all, let us check that, for large 7'(j), as a function of, is an honest distribution function in the
sense that it is monotonous jn Consideringj as a continuous variable, we obtain

m—1

T'(j) ==L B(i,j)(i —n"¢’)/(1—pg’ ).

=0

But to the left of the concentration domaintq¢’ > m, so thatT”(j) > 0. In and to the right of the
concentration domain, the Poisson approximation leads, with e =27, to

m—1
e N /il(i —A\) = —e A/ (m — 1)1 < 0

1=0
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and again7”(j) > 0. Settingn = j — log(n*), this leads to

T(j)* ~ G(n) = g(n)*,

andS}, is the mean of the RV with distribution functidf(;)*, minus1 (as the sum starts herejat 1).
Now we need a rate of convergence. This is computed as follows. We will consider three ranges. Let
1/2<B8< 1

e Forj < Blogn*, T(j)* is small. Indeed
T(H)* < [mn*mexp(fn* 1*5)}]6

e ForfBlogn* < j < 2logn* we have

m—1

Gt ot =[5 pea)| [ S

=0 1=0

“wgfmmm+oumw+mv@WHWW@”ﬂﬁ{§§W”4k

i=0
=m"O(1/n* 2P 1).

g(im)]k

e Forj =2logn* + z,x > 0, we have

megmﬁ~[mmmu+omvm”Q%m

-1

3

+

™

Il
=

k
mmm+OGMﬂ+mUM%+0mvwm]—[

7

~m*O[1/(n*Q")]" /n*

B

as )
g(i,n) = O[(1/(n*Q")")].

We can then proceed as in Section 5.1.
Now we return to the main problem: compute the mean of the distribution function

T(j)F ~ G(n) = g(n)*.
e Let us first consider the cage= 1. This leads for = 0 to

o1(a) = /OO g’ (0,2)dr =T(1 —a), R(a)<L.

— 00

Next, we derive

m—1
/ e Z g (i, 2)dr = —aMi(a)

with

This leads to
d(a) = —Mi(a)(e* = 1)+ T(1—a)(e* —1)/a.
Proceeding as in Section 3 and as in the trie case (see [13]) we obtain
1
S1 ~ logn* + % — 5 — Ml(O) +6171 —|—C’)(1/n)
with My (O) = Hm_l/L and

m—1 .
1 r Now o
5171 = Z E |: _ E (7’ + Xl) _ F(Xl) 672”” logn™ _ _ — § m + Xl 72l7'rz logn ,

]
prrd 7!

i=1 l;éo
by induction, which is exactly the expression given in [1].
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e Fork = 2, we derive similarly

p1(e) = 2°T(1 — @),
pa(a) = —aMs(a),

m—1m—1
2°T(i +v — @)
Lyz; UZO[[U—FZ#O]] S uily]
This leads to )
Sy ~logn* +log2 + % — 5 = Ma(0) + Br2 + O(1/),
with

51,2 = Z [ - M2(a)|&:—xz — 2*X1F(Xl)/L} e—2lmilogn”

1£0

=, F(+ + ) —2lmilog(2n™
=-2 2 2) s ¢

e For generak we finally obtain

1
Sk ~logn* + logk + % —3~ My (0) + Brr +O(1/n),

with

m ‘ Y G )
a):z~'~2[[11+"‘+lk7éoﬂ kit +7k21 caplL
i1=0 ik_o

7’1+ +Zk+Xl) —2lmilog(kn™)
TS 5D DR g E=HEUES T R

1#0 41=0  i,=0

Note again the presence bin the exponent.

This gives
Vi~logn*—1/2+~/L+ B+ C;+ 5, with
l
B, = <li>( D log k,
k=2
Lo/
5= ()0
k=1
L/l
Cr=3" () (-0 0)
k=1
and, finally

l+1

oo
E(e®X) = exp [a(logn* —1/24~/L) + Z
1=2

0 l+1

+3

=1

—- D'+ 0(1/@}

From this, we derive

l+1
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+3 5

=1

l+1

—1D'C) — a(=My(0) + B1.1)],

and the moments of — logn* are given by

~ v 1

= = — — — (\/1
m =7 =5~ M),
wyr = B1,1,

L2 = log 2 + M;(0) — M>(0),

i3 = —3log2 4 2log3 — M1 (0) + 3M5(0) — 2M3(0),
= 12— B,

kg = B11 —3P12+ 201 3.

The quantitiesn,, wi, 112 are given in Archibald, Knopfmacher and Prodinger [1]. Since they look
somehow different, here is a

Direct proof that the two expressions for the variance coincide.
What is denoted, here, comes outin [1] as

yirm=t fiem —1\[i—1 21 2j 27 1
lc’g“LZ Q1—1)< i )(m—l)‘L;%( )2( )Qhﬂ—l

i>1

m—1 .

1 1 (27 s

_ _ 24
LZh —1) LZQj(j)
h>1 j=1

So we are left to prove that

yiFm=l ik m—1\[i—1 1 (25 —2j 1
D @1—1( j >(m—1)‘2§2j(j)z(h)cylﬂ—1

i>1 h>0
m—1 m—1
- 1 r(i+j—1)
2 — =N 2 i,
* Z h(Q 2j ( ) Z ilj! + 1
h>1 Jj=1 2,7=0

where the dashed sum means that the teemj = 0 has to be excluded. If we take the diagonal out of
the sum with the dash, we are left to prove:

Z%(””ZI)(W 255 (Ve

i>1 =1 h>0
((+j-D' ;1
P T L e
h>1 0<i<j<m

or

ey () () - S

131(; —
et 313 = 5)!
(1)t Z (i+5—-1__,_. 1
_27 - = — —_— 2ZJ+7Hm71;
i __ 141
i>1 Z(Q 1) 0<i<j<m—1 v 2
notice that the right side does not depend:ifNow we evaluate one appearing sumfer> i > 1:

min(m—1,i) (

>

i S I GE)] i

—1)i(i+j —1)! _i‘:( (i+j—1)! 1
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by Vandermonde’s convolution. Thus we are left to prove that

Z@%(Z:D(H) > S s

>m i>m
-1
Yot ¥ S n
ily! 2
z>m 0<i<j<m

We will achieve that by proving that both sides are actually zero!
We treat the right side by induction an, the instancen = 1 being clear. The induction step amounts
to prove that

Z (i4+m— 1)!2_1-_m B

ilm! 2m

)
0<i<m

or

Z (2+m—1)'2_l:2m_1’
il(m —1)!

which is the “unexpected” sum (5.20) in [5].
Now we turn to the left side; we need to show that#for m,

—i— 1\ (=1 (=145 — 1)
—1 e —1=0,
m—1)\m-—1 ; gl — )
Jj=1
DG -20)0)
m—1)\m-—1 = \Ji/\
This follows from Euler’s identity [5, ex. 28, p. 244], or can simply be proved by induction.

This finishes the proof.
Remark. We learn from this computation that the expressior#gcanstill be simplified:

0<i<m

or

- 1 2i—1 i
ugzlongZ Z !2 2i

14!
1<i<m

Now we continue after this intermezzo.— The asymptotic distributioXaf given by the following

result:

Theorem 6.3 Setn := j — logn* and

Then, withj integer andy = O(1),

PX=3) ~ S =3 -t ) ] sow) 3[R
u=0 Z

w=2—u 1< <ru =1
rj >2—u

P(X <j) ~ F(n), with F(n) ::Zf(n—i)-
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6.2 Maximal non-empty urn

6.2.1 General multiplicity m
We have here

p(j) :=PB(M =j) ~ (1 -T()) ] T0),
i=j+1
PG~ [ 76),
i=j+1

and this leads to
(6.3)

with

Ur(n) = [[ 9t +1).
=1
Now we could proceed as in Section 4.3.

6.2.2 Particular case m = 2

In the following we use a different approach and work out the detailsrfor 2. The reason for this
restriction is that the results are more appealing in this case; Euler’s partition identity allows to expand a
product into a sum, and there is nothing equivalentfior- 2. This can be compared with the analysis in
[4] and the analysis in [10]; the latter does not have the nice explicit sBffes

We can computé®(j) by noticing that there are sonieelements which fall into urns numbered,
but are alone in their urn, and the remaining- k£ elements which are in urns with numbets;j, but no
further restrictions. Thus

P(j)=PX <jl=) <Z> (=g * & > pg T pg!

k=0 F<AL< <Ay

= <n> (L= FRphg® Y gt
o \k 0<AL < <Ap
n n Nn—k .
=3 (1)@t I+ )
k=0 1>0
s R
=> ()@= Frpkgt —,
k=0 k (@)x

by one of Euler’s partition identities.
After these preliminaries, we consider the asymptotic form. We have

HOEDY %(1 —) ©4)
u=0 u ’

Settingn = j — logn, we obtain

with

F(n) =3 P b exp(—e ). (65)
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Let us first check the equivalence of (6.5) with (1)) given by

oo
H Xp( n+k)) [1 4 LR

with
* p
n=j—logn® =n—log-.
q
This leads to
Ur(n) = [ exp (—e " pg" ") [1+ e Fpgt ]
k=1

(6.6)

Now, again by Euler’s identity, (6.5) gives

F(n) = exp(—e~ ") TT [L + e ""pg"]
k=0

which is equivalent to (6.6).

Let us now compute the rate of convergence. We must boBf) — F(n)|. Let0 < 8 < 1. We will
consider three ranges

e Forj < fBlogn, P(j)is small. Indeed
w(u—1)/2,u
. — q p U, U
P(j) < exp(—n' ﬁ)/KE Wff n-.
u=0

The sum is bounded by
Z qu2/2nu7
u=0
which we can estimate by the Euler—Maclaurin formula (or by the Mellin transform). The sum is

asymptotically given by
exp(L log2 n/2)\/2n/L.
Note that the maximum of the quadratic form in the exponent occur$ atlogn.
e Forplogn < j < 2logn, we set := e~ 7. Note thatl /n < § < n'=5.
Now we use the “sum splitting technique.” Set n'/4
1. truncating the sum in (6.4) toleads to an errof :
u(u—1)/2

E, < Z q Sue—d < e’L"wEn/K,

where

E11 = Olexp(L(1 — ﬁ)n1/4 logn) exp(—n'=7)], if 6 = n'=?, asr > u* = (1 - ) logn,
En=0(1)if6 =1,

E1, = O(exp(—Ln'/*logn)), if 6 = 1/n.

2. replacmgm in the truncated sum by leads to a relative erroru?/n (by Stirling),
which leads to an errafs:
r u(u—1)/2

1 sve~%u?/n.
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This gives
E2<Zq n'=Yue " 42 /n,  if § =nl"C.
Now we use the standard saddle point technique: the saddle point is
=(1—0)logn+2/(L(1 —o)logn) + O(1/log*n),
and this leads to

Ey < exp[L/2(1 — )%(log? n + O(loglog n))}efnl_ﬁ/(Kn), if 6 =n'"",
E,=0(1/n), ifd=1,
Ey = O(1/n?), ifé6=1/n.

3. replacing(1 — ¢/)"~! in the truncated sum byxp(—e~") leads to a relative error
ng* = 6% /n which gives an error;:

T u(u—1)/2
By < Z a 545% % /n.
This gives
E3<Zq n=0)(ut2)g=n'"7 pp g § = pleo
and this leads to

E5 < exp[L/2(1 — B)%(log® n + O(logn))]e™ * /(Kn), if § = n* P,
Es=0(1/n), f6=1,
Es = 0O(1/n?), if 6 = 1/n.

4. completing the sum in (6.5) leads to an erkr

E4<Zq

u(u— 1/2p .y —6

which is analyzed a&’;.
e Forj =2logn +x,z > 0, we haved = 1/(nQ). Set again = n'/%.
1. truncating the sum in (6.4) toleads to an erroE :
By < e~Ln'/?/2g-Lllognta)m’ /g

2. replacing#iu)I in the truncated sum bi/leads to an erroFs:
= 0(1/(n*Q")),

3. replacing(1 — ¢/)"~! in the truncated sum byxp(—e~1") leads to a an erraf;:
= O[1/(n*Q*)),

4. completing the sum in (6.5) leads to an erkqr

E4<Zq

(u— 1/2p st 76

which is analyzed a&;.
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Now we can bound the difference between the momenf$ ahd the moments based &t{n):
\2; P 1))~ 1F) - = 1))
<2 [o«mog n*) exp(—n1=9-%))

+ (2logn*)* 1 O(1/n) + O(Z(?logn* + x)ka/nQ)}

x>0

= 0(1/n'79),

wheree is any small positive real number. Now we turn to the moments. We obtain

p@)=T(1-a&) —a) Vwl(u-a)/L

with
a:=a/L, Rla)<L, V(u):=

We recognize the trie expression in the first part. Note alsogfft= 1 as it should. The second part of
() leads to

M8

pa(a) = —(e* = 1) V(u)(u—a)/L.

Il
—

u

Seta = —s, s = 0 + it, 0 > 0. Using (3.7),/¢2(a)| is bounded by

(L

which is exponentially decreasing. Now we set

u(u— 1)/2 R
|t|u+a—1/26—7rt|/2) -0 (eLlog (|t\)/2) |t|o'—1/26—7r|t‘/2

This leads to

my = (y - C1)/L,
mo = (72/6 + 7% + 2Cs) /L3,
= (2¢(3) + m2y/2 ++* = 3C3 — 3Cy) /L3,
my =mq + 1/2,
Mg =my +1/3+ (726 + 42 4+ 203)/L?,
g =my 4+ 1/4+ (72 /4 4+ 372 /2 + 3Cy) /L2 + (2¢(3) + 72y/2 +~v* — 3C3 — 3Cy) />,
o = (72/6 +~* +205) /L* — m],
ps = 2m3 + (=3myy? —mym? /2 — 6miCo)/L* + (2¢(3) + 7%v/2 +~° — 3C3 — 3C,) /L3,
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fio = (126 + 72 +2C5)/L? —m? +1/12,
Az = 3.

Let us now turn to the fluctuating components. The fundamental stripifof(s) € (—1,0). First of
all, (3.3) and (3.4) lead to

oo

wi ==Y [F0u) + D V@) (u+x)|e %L

1#0 u=1

Equations (3.5) and (3.6) lead, after the usual simplifications necessary to help Maple, to

oo

Ka =2 {F(Xl)¢(Xl) + ) V(@) (u A+ xa)tb(u + Xz)} e 2B (12— 2mywy — i,
1#0 u=1
rs = 3 [ = 8T0w)w (1 x) = 300 (1) — 6T (x)$(x) L(wr +m)
140
+ 303V (@)L (u -+ xa) (L + x0) — 6V (@)D (u + xo)tb(u + xa) Lmy +wy)
u=1

_ 3V(U)F(u -+ Xl)wZ(U + Xl)) 672171'2' logn/L3
L+ 1200, 2mu s — s — 12Ca](2L7)

6.3 First empty urn
SetE :=inf{i : X; = 1}. We obtain

This leads to
p(j) ~ f(n) = ¥s(n),
P(j) ~ F(n) =1-¥s(n),
with -
Us(n) .= (1 - g(n—1)).
=0

We proceed now exactly as in Section 4.3 and we derive all moments. We recognize here the split-
ting process arising iprobabilistic counting see Kirschenhofer, Prodinger and Szpankowski [10]. The
guantitiesmiy, jio andw; are given in their paper. We don’t give more details in this subsection.

7 Conclusion

If we compare the approach in this paper with other ones that appeared previously, then we can notice
the following. Traditionally, one would stay with exact enumerations as long as possible, and only at a
late stage move to asymptotics. Doing this, one would, in terms of asymptotics, carry many unimportant
contributions around, which makes the computations quite heavy, especially when it comes to higher mo-
ments. Here, however, approximations are carried out as early as possible, and this allows for streamlined
(and often automatic) computations of the higher moments.

One of the referees asked the question: can this work be extended to other distributions under conditions
of exponentially decreasing tails? Indeed, this can be done, but at the expense of less explicit formulee.
Another interesting problems would be to consider Carlitz compositions (where two successive parts are
different) and other Markov chains (see [13]). This will be the object of future work.
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