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We consider a sequence ofn geometric random variables and interpret the outcome as an urn model. For a given
parameterm, we treat several parameters like what is the largest urn containing at least (or exactly)m balls, or
how many urns contain at leastm balls, etc. Many of these questions have their origin in some computer science
problems. Identifying the underlying distributions as (variations of) the extreme value distribution, we are able to
derive asymptotic equivalents for all (centered or uncentered) moments in a fairly automatic way.
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1 Introduction
Let us consider a sequence ofn random variables (RV),Y1, . . . , Yn, distributed (independently) according
to the geometric distribution Geom(p). Setq := 1 − p, thenP(Y = j) = pqj−1. If we neglect the order
in which then items arrive, we can think about an urn model, with urns labeled1, 2, . . ., the probability
of each ball falling into urnj being given bypqj−1.

Various questions arise about the distribution of then balls into these urns. There is a large number of
interesting parameters that were studied in the literature, often because of a computer science application.
We will give a few examples. The number of the largest nonempty urn (“the maximum” or “the height”)
was analysed in [18], see also [9]; it is related to a data structure called skip list (see [15]). This is a
list-based data structure that one may use instead of search trees.

Another parameter that appears inprobabilistic counting[4] is the smallest index of a nonempty urn
minus 1, or the length of the largest sequence of nonempty urns (starting with urn 1). And, clearly, a
parameter that is between those two, is simply the number of nonempty urns. There are also several
generalisations around, involving a parameterm (sometimes denotedb or d); like “how many urns are
there that contain at leastm balls.” The instancem = 1 refers then to the number of nonempty urns.

We would also like to emphasize thatinteger compositionsare closely related to the instancep = q = 1
2 ;

the probability that digit 1 occurs is12 , that digit 2 occurs is14 , etc. The difference is that the sum of the
digits must ben, whereas normally we are interested inn balls (or digits in this case). However, the
differences are minor, and we refer to [6] and the references therein.

In the present paper, we extend, generalise, and rederive many known (and unknown) results, using a
procedure that we will describe in a minute. As applications, we deal with the 3 parameters described (or
variants thereof), under the following assumptions. a) we deal with nonempty urns; b) we deal with urns
that containexactlym balls and c) we deal with urns that containat leastm balls (which is a generalisation
of a). The intuition is as follows, say, forp = q = 1

2 : About n
2 balls will go into urn 1, aboutn4 into urn 2,

etc. For a while, every urn will be nonempty (or contain≥ m balls), then there is a sharp transition, and
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then the urns will be empty. So, in the instance b) (exactlym balls in the urn), we can expect to see such
urns only in this (small) transition range.

It is that special situation with the sharp transition that makes the analysis of this paper possible. To be
more precise, we are dealing here with theextreme value distributionand variants thereof. Once a few
technical conditions have been checked, the machinery developed in [6] applies, and we get asymptotic
forms of all the moments, as well as the centered moments and asymptotic distributions. As it often hap-
pens in these type of problems, there are periodic fluctuations (oscillations) involved. The approximations
obtained from the extreme value distribution, together with the Mellin transform, establish the fluctuations
in the form of Fourier series. After several preliminaries have been discussed, what remains is to a large
extent mechanical, and here computer algebra (Maple) comes in.

Several subsections where derivations and reasonings are similar to others, are brief and sketchy, in
order not to make this already long paper longer than necessary.

Note that, in [8], Karlin obtained some interesting results on similar topics, including some non-
geometric RV.

Here is the plan of the paper: Section 2 sets up the general framework; Section 3 is a continuation of
it, dealing with fluctuations. Then we come to the discussion of multiplicities: Section 4 deals with mul-
tiplicity at least 1, Section 5 with the number of distinct values (number of urns). Section 6 is concerned
with multiplicity at leastm, and Section 7 contains a few final remarks.

2 The general setting
We will use the following notations:

∼ := asymptotically, n→∞,

m := the fixed multiplicity (an integer value),

n∗ := np/q,

Q := 1/q,
L := lnQ,

log := logQ,

α̃ := α/L,

B(v, i) :=
(
n

v

)
(pqi−1)v(1− pqi−1)n−v,

T (j) :=
m−1∑
i=0

B(i, j),

g(v, η) := exp(−e−Lη)
e−Lvη

v!
,

R(j, n) :=
m−1∑
i=0

1
i!

(n∗qj)i exp(−n∗qj),

g(η) :=
m−1∑
i=0

g(i, η),

V (u) :=
puq(

u
2)

(q)u
,

(q)l := (1− q)(1− q2) . . . (1− ql),
K := (q)∞.

The following facts will be frequently used:

(1− u)n < e−nu, u ∈ ]0, 1[ ,

(1− u)n = e−nu
[
1− nu2/2 +O(nu3)

]
, u ∈ ]0, 1[ ,

(1− u)n =
[
1− nu+ n(n− 1)/2u2 +O(nu3)

]
, u ∈ ]0, 1/n[ ,
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n

i

)
ui(1− u)n−i = (nu)i e

−nu

i!
[
1 +O(1/n) +O(u) +O(nu2)

]
, u ∈ ]0, 1[, i fixed;

this is the Poisson approximation.

For all discrete RVsYn analyzed in this paper, we set

p(j) = P(Yn = j), P (j) := P(Yn ≤ j).

We will either setη = j− log n or η = j− log n∗, depending on the situation. After all, there is not much
difference; only a shift by a constant amountlog(p/q). We will first computef andF such that

p(j) ∼ f(η), P (j) ∼ F (η), n→∞,

and, of course,
f(η) = F (η)− F (η − 1).

Asymptotically, the distribution will be a periodic function of the fractional part oflog n. The distribution
P (j) does not converge in the weak sense; it does, however, converge in distribution along subsequences
nm for which the fractional part oflog nm is constant. For instance such subsequences exist ifQ = n

1/n2
1 ,

n1, n2 integers.
Next, we must show that

E
(
Y k

n

)
=

∞∑
j=1

jkp(j) ∼
∞∑

j=1

(η + log n∗)k[F (η)− F (η − 1)], (2.1)

by computing a suitable rate of convergence. This is related to a uniform integrability condition (see Loève
[11, Sec.11.4]).

Finally we will use the following result from Hitczenko and Louchard [6] related to the dominant part
of the moments (the ‘̃ ’ sign is related to the moments of the discrete RVYn).

Lemma 2.1 Let a (discrete) RVYn be such thatP(Yn − log n∗ ≤ η) ∼ F (η), whereF (η) is the dis-
tribution function of a continuous RVZ with meanm1, second momentm2, varianceσ2 and centered
momentsµk. Assume thatF (η) is either an extreme-value distribution function or a convergent series of
such and that (2.1) is satisfied. Let

ϕ(α) = E(eαZ) = 1 +
∞∑

k=1

αk

k!
mk = eαm1λ(α),

say, with

λ(α) = 1 +
α2

2
σ2 +

∞∑
k=3

αk

k!
µk.

Letw, κ’s (with or without subscripts) denote periodic functions oflog n∗, with period1 and with small
(usually of order no more than10−6) mean and amplitude. Actually, these functions depend on the frac-
tional part oflog n∗: {log n∗}.

Then the mean ofYn is given by

E(Yn − log n∗) ∼
∫ +∞

−∞
x[F (x)− F (x− 1)]dx+ w1

= m̃1 + w1, with m̃1 = m1 + 1
2 .

More generally, the centered moments ofYn are asymptotically given bỹµi + κi, where

Θ(α) := 1 +
∞∑

k=2

αk

k!
µ̃k =

2
α

sinh(α
2 )λ(α).

The neglected part is of order1/nβ with 0 < β < 1.
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For instance, we derive

µ̃2 = σ̃2 = µ2 +
1
12
,

µ̃3 = µ3,

µ̃4 = µ4 +
σ2

2
+

1
80
,

µ̃5 = µ5 +
5
6
µ3.

The moments ofYn − log n∗ are asymptotically given bỹmi + wi, where the generating function of̃mi

is given by

φ(α) :=
∫ ∞

−∞
eαηf(η)dη = 1 +

∞∑
i=1

αi

i!
m̃i = ϕ(α)

eα − 1
α

. (2.2)

This leads to

m̃1 = m1 +
1
2
,

m̃2 = m2 +m1 +
1
3
,

m̃3 = m3 +
3
2
m2 +m1 +

1
4
;

wi andκi will be analyzed in the next section. Note that

Θ(α) = φ(α)e−α em1 .

This leads to

µ̃2 = m̃2 − m̃2
1,

µ̃3 = m̃3 + 2m̃3
1 − 3m̃2m̃1.

3 The fluctuating components in the moments of Yn − log n∗

To analyze the periodic componentwi to be added to the moments̃mi we proceed as in Louchard and
Prodinger [13]. For instance,

E(Yn − log n∗) ∼ E(1)(n) =
∞∑

j=1

[F (j − log n∗)− F (j − log n∗ − 1)][j − log n∗]. (3.1)

Sety = Q−x andG(y) = F (x). Equation (3.1) becomes

E(1)(n) :=
∞∑

j=1

[G(n/Qj)−G(n/Qj+1)][− log(n/Qj)],

the Mellin transform of which is (for a good reference on Mellin transforms, see Flajolet et al. [3] or
Szpankowski [17])

Qs

1−Qs
Υ∗

1(s), (3.2)

and

Υ∗
1(s) =

∫ ∞

0

ys−1[G(y)−G(y/Q)][− log y]dy =
∫ ∞

−∞
Q−sx[F (x)− F (x− 1)]xLdx.

Then
Υ∗

1(s) = L φ′(α)|α=−Ls . (3.3)

The fundamental strip of (3.2) is usually of the forms ∈ 〈−C1, 0〉, C1 > 0. Set also

Υ∗
0(s) = L φ(α)|α=−Ls , Υ∗

0(0) = L.
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We assume now that all poles ofQ
s

1−Qs Υ∗
1(s) are simple poles, which will be the case in all our examples,

and given bys = 0, s = χl, with χl := 2lπi/L, l ∈ Z \ {0}. Using

E(1)(n) =
1

2πi

∫ C2+i∞

C2−i∞

Qs

1−Qs
Υ∗

1(s)n
−sds, −C1 < C2 < 0,

the asymptotic expression ofE(1)(n) is obtained by moving the line of integration to the right, for instance
to the line<s = C4 > 0, taking residues into account (with a negative sign). This gives

E(1)(n) = −Res
[ Qs

1−Qs
Υ∗

1(s)n
−s

]∣∣∣∣
s=0

−
∑
l 6=0

Res
[ Qs

1−Qs
Υ∗

1(s)n
−s

]∣∣∣∣
s=χl

+O(n−C4).

The residue ats = 0 gives of course

m̃1 =
Υ∗

1(0)
L

= φ′(0).

The other residues lead to

w1 =
1
L

∑
l 6=0

Υ∗
1(χl)e−2lπi log n. (3.4)

More generally,
E(Yn − log n∗)k ∼ m̃k + wk,

with

wk =
1
L

∑
l 6=0

Υ∗
k(χl)e−2lπi log n,

and
Υ∗

k(s) = L φ(k)(α)
∣∣∣
α=−Ls

.

The residue analysis is similar to the previous one.
To compute the periodic componentκi to be added to the centered momentsµ̃i, we first set

m1 := m̃1 + w1.

We start from

φ(α) := 1 +
∞∑

k=1

αk

k!
m̃k = ϕ(α)

eα − 1
α

.

We replacẽmk by m̃k + wk, leading to

φp(α) = φ(α) +
∞∑

k=1

αk

k!
wk.

But sinceφ(2lπi) = 0 for all l ∈ Z, we have∑
l 6=0

φ(−Lχl)e−2lπi log n = 0,

and so

φp(α) = φ(α) +
∞∑

k=0

∑
l 6=0

φ(k)(α)
∣∣∣
α=−Lχl

e−2lπi log nα
k

k!

= φ(α) +
∑
l 6=0

φ(α− Lχl)e−2lπi log n

=
∑
l∈Z

φ(α− Lχl)e−2lπi log n.

(3.5)
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Finally, we compute

Θp(α) = φp(α)e−αm1 = 1 +
∞∑

k=2

αk

k!
(µ̃k + κk) = Θ(α) +

∞∑
k=2

αk

k!
κk, (3.6)

leading to the (exponential) generating function (GF) ofκk. This leads to

κ2 = w2 − w2
1 − 2m̃1w1,

κ3 = 6m̃2
1w1 + 6m̃1w

2
1 + 2w3

1 − 3m̃2w1 − 3m̃1w2 − 3w1w2 + w3.

All algebraic manipulations of this paper will be mechanically performed by Maple. We will give
explicit expressions for̃µ2, κ2, µ̃3 andκ3.

It will appear thatΥ∗
k(s) are analytic functions (in some domain), depending on classical functions such

as Euler’sΓ function. But we know thatΓ(s) decreases exponentially towards±i∞:

|Γ(σ + it)| ∼
√

2π|t|σ−1/2e−π|t|/2. (3.7)

and all our functions will also decrease exponentially towards±i∞.

4 Multiplicity at least 1

As in Hitczenko and Louchard [6] (where the casep = 1/2 is analyzed), we can check that, asymptotically,
the urns become independent.

Set the indicator RV (in the sequel we drop then-specification to simplify the notations):‡

Xi := [[valuei appears among then RVs]].

4.1 Maximal non-empty urn
The maximal full urn index

M := sup{i : Xi = 1}

is such that
P (j) := P[M ≤ j] = (1− qj)n ∼ e−nqj

.

With η = j − log n, we obtain
P (j) ∼ F (η),

with
F (η) = exp(−e−Lη).

This is exactly the same behaviour as in thetrie case, analyzed in Louchard and Prodinger [13, Sec-
tion 4.1], where the rate of convergence is already computed. We note that the distribution is concentrated
on the rangeη = O(1), i. e., in the concentration domainj = log n+O(1).

From [13, Section 5.1], we derive the moments ofM − log n:

m̃1 =
γ

L
+

1
2
,

µ̃2 =
π2

6L2
+

1
12
,

µ̃3 =
2ζ(3)
L3

.

whereγ is Euler’s gamma constant. Let us now turn to the fluctuating components. We have hereϕ(α) =
Γ(1− α̃). The fundamental strip fors is<(s) ∈ 〈−1, 0〉. First of all, (3.3) and (3.4) lead to

w1 = − 1
L

∑
l 6=0

Γ(χl)e−2lπi log n.

‡ Here we use the indicator function (‘Iverson’s notation’) proposed by Knuth et al. [5].



The number of distinct values of some multiplicity in sequences of geometrically distributed random variables237

Next we obtain

κ2 = −2
γw1

L
− w2

1 +
2
L2

∑
l 6=0

Γ(χl)ψ(χl)e−2lπi log n,

κ3 = −6
(w1

L2
+

γ

L3

) ∑
l 6=0

Γ(χl)ψ(χl)e−2lπi log n − 3
L3

∑
l 6=0

Γ(χl)ψ2(χl)e−2lπi log n

− 3
L3

∑
l 6=0

Γ(χl)ψ(1, χl)e−2lπi log n + 2w3
1 +

(6γ2 − π2)w1

2L2
+

6γw2
1

L
,

whereψ is the digamma function (logarithmic derivative of theΓ function) andψ(1, x) is the trigamma
function.

4.2 Number of distinct values

This is actually a measure of distinctness. SetX :=
∞∑

i=1

Xi.

We can now proceed as in Louchard and Prodinger [13, Section 5.8]. We don’t consider the rate of
convergence here: this will be computed in Section 6.1, in a more general setting. Note that

P(Xi = 0) = (1− pqi−1)n ∼ e−npqi−1
= e−n∗qi

if we set, as always,n∗ = np/q.
This leads, for the moments ofX − log n∗, to

m̃1 =
γ

L
− 1

2
,

w1 = β1,1,

µ̃2 = log 2,
µ̃3 = −3 log 2 + 2 log 3,
κ2 = β1,2 − β1,1,

κ3 = 2β1,3 − 3β1,2 + β1,1,

with

β1,k = − 1
L

∑
l 6=0

Γ(χl)e−2lπi log(n∗k).

Note the presence ofk in the exponent. Note also that the variance has here a periodic component,
contrariwise to the casep = 1

2 : We have thatκ2(x) = β1,1(x + log 2) − β1,1(x), and this is zero for
Q = 2, because of the periodicity 1. The first two moments are given in Archibald, Knopfmacher and
Prodinger [1]; the cancellation forp = q = 1

2 was noticed therein, see also [14]. In [8], Karlin mentions
that the mean ofX “could oscillate irregularly,” but does not give an expression, even in the geometric
case. In his Theorem1′, he provides thelog n dominant term ofE(X), and in Section6.III, he givesµ̃2,
µ̃3, mentioning that “the distribution ofX is difficult to identify.”

Actually, the asymptotic distribution ofX can be adapted from Hitczenko and Louchard [6]. We obtain
the following result:

Theorem 4.1 Setη := j − log n∗ and

Ψ1(η) := e−e−Lη
∞∏

i=1

[
1− e−e−L(η−i)

]
.

Then, withj ∈ Z andη = O(1),

P(X = j) ∼ f(η) =
∞∑

u=0

Ψ1(η − u+ 1)e−e−L(η+1−u)/(Q−1)
∑

r1<···<ru
rj≥2−u

u∏
i=1

1− e−e−L(η+ri)

e−e−L(η+ri)
,

P(X ≤ j) ∼ F (η), with F (η) :=
∞∑

i=0

f(η − i).
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4.3 First empty urn

SetE := inf{i : Xi = 0}.
Again, we start from [13, Section 4.8]. Setting

A1(j) :=
j∏

i=1

[1− (1− pqi−1)n] ≤ 1,

we obtainP (j) ∼ 1−A1(j). We have

η = j − log n∗,

p(j) ∼ (1− pqj−1)
n
A1(j − 1),

Ψ2(η) :=
∞∏

k=0

[
1− exp(−e−L(η−k))

]
,

F (η) := 1−Ψ2(η),
f(η) := Ψ1(η).

The rate of convergence is fully analyzed in [13] in the casep = 1/2. The analysis is similar here. Also, in
this casep = 1/2, from [13, Section 5.9.1], we first define the entire functionN(s) which is the analytic
continuation of ∑

j≥1

(−1)ν(j)

js
,

whereν(j) denotes the number of ones in the binary representation ofj. This gives

N(0) = −1,
N ′(0) = −.4874506 . . . ,
N ′′(0) = .8433214 . . . ,
N ′′′(0) = −.8683385 . . . .

We obtain the moments ofE − log n∗ for p = 1/2:

m̃1 =
γ +N ′(0)

L
+

1
2
,

µ̃2 =
1

6L2

(
− 6N ′(0)2 + π2 − 6N ′′(0)

)
+

1
12
,

µ̃3 = (2N ′(0)3 + 3N ′′(0)N ′(0) +N ′′′(0) +
2ζ(3)
L3

.

Let us now turn to the fluctuating components:

w1 =
1
L

∑
l 6=0

N(χl)Γ(χl)e−2lπi log n∗ ,

κ2 = −w2
1 −

2
L2

∑
l 6=0

[
N(χl)(γ +N ′(0)) +N ′(χl) +N(χl)ψ(χl)

]
Γ(χl)e−2lπi log n∗ .

Next we obtain

κ3 =
∑
l 6=0

{
3ψ(1, χl)N(χl)/L3 + ψ(χl)[6N(χl)w1/L

2 + 6N ′(χl)/L3 + 6N(χl)(γ +N ′(0))/L3]

+ 3N(χl)ψ2(χl)/L3 + 3
(
2(N ′(0) + γ)N ′(χl) +N ′′(χl)

)
/L3

}
Γ(χl)e−2lπi log n∗

+ 6w1

∑
l 6=0

N ′(χl)Γ(χl)e−2lπi log n∗/L2
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− w1

2L2

(
6γ2 + 12γN ′(0)− 6N ′′(0) + L2 + π2

)
− 6w2

1

L

(
γ +N ′(0)

)
− 4w3

1.

In the casep 6= 1/2, we follow the lines of Sections 2,3, and we define (we have no explicit form here)

ϕ(α) :=
∫ ∞

−∞
eαηF ′(η)dη = −α

∫ ∞

−∞
eαηF (η)dη.

This leads to

m̃1 =
1
2

+ ϕ′(0),

w1 = −
∑
l 6=0

ϕ(−Lχl)
Lχl

e−2lπi log n∗ ,

µ̃2 =
1
12

− ϕ′(0)2 + ϕ′′(0),

µ̃3 = 2ϕ′(0)3 − 3ϕ′′(0)ϕ′(0) + ϕ′′′(0),

w2 = −
∑
l 6=0

[
2
ϕ′(−Lχl)
Lχl

+
ϕ(−Lχl)
Lχl

+ 2
ϕ(−Lχl)
L2χ2

l

]
e−2lπi log n∗ ,

w3 = −
∑
l 6=0

[
3
ϕ′′(−Lχl)

Lχl
+ 3

ϕ′(−Lχl)
Lχl

+ 6
ϕ′(−Lχl)
L2χ2

l

+
ϕ(−Lχl)
Lχl

+ 3
ϕ(−Lχl)
L2χ2

l

+ 6
ϕ(−Lχl)
L3χ3

l

]
e−2lπi log n∗ ,

κ2 = −w1 − 2ϕ′(0)w1 − w2
1 + w2,

κ3 = 1
2w1 − 3

2w2 + w3 + 3ϕ′(0)w1 + 3w2
1 + 6ϕ′(0)2w1

+ 6ϕ′(0)w2
1 − 3ϕ′′(0)w1 − 3ϕ′(0)w2 + 2w3

1 − 3w1w2.

Alternatively, we could start from

φ(α) :=
∫ ∞

−∞
eαηf(η)dη.

5 Multiplicity exactly m

We consider fixedm = O(1). Set

Xi(n) := [[valuei appears among then GEOM(p) RVs with multiplicitym]].

ThenP[Xj(n) = 1] = B(m, j), with

B(m, j) :=
(
n

m

)
(pqj−1)m(1− pqj−1)n−m.

We immediately see that the dominant range is given byj = log n + O(1). To the left and the right of
this range,P[Xj(n) = 1] ∼ 0. Within and to the right of this range,P[Xj(n) = 1] is asymptotically
equivalent to a Poisson distribution:

P[Xj(n) = 1] ∼ 1
m!

(n∗qj)m exp(−n∗qj). (5.1)

Setting againη := j − log n∗, we deriveP[Xj(n) = 1] ∼ g(m, η), with

g(m, η) := exp(−e−Lη)
e−Lmη

m!
.
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5.1 Number of distinct values

SetX(n) :=
∞∑

i=1

Xi(n). We must first check the asymptotic independency of the urns. Let us consider

Πn(z) = E(zX(n)). We are interested in the behaviour ofΠn(z) for complexz ∈ Dε(1) = {t | |t− 1| ≤
ε}, whereε is a small fixed positive real number. We chooseε > 0 such thatc := log(1 + ε) < 1.

Theorem 5.1 We have

Πn(z) =
∞∏

l=1

[(
1− 1

m!
(n∗ql)me−n∗ql

)
+ z

1
m!

(n∗ql)me−n∗ql

]
+O(nc−1), n→∞,

uniformly forz ∈ Dε(1), where0 < c = log(1 + ε) < 1.

Proof
We use an urn model, as in Sevastyanov and Chistyakov [16] and Chistyakov [2], and the Poissonization
method (see, for instance Jacquet and Szpankowski [7] for a general survey). In the above formulation,
we have afixednumbern of geometric random variables, each corresponding to a ball. The value of each
RV denotes the bin into which the ball is placed. For instance, ifY1 = 3, then the first ball is placed into
the third bin.

In order to utilize the Poissonization method, instead of using afixednumber of balls, we useN balls,
whereN is a Poisson random variable withE(N) = τ . It follows that the urns areindependent, and
the number of balls in urnl is a Poisson random variable with parameterτ∗ql. We use a “̃ ” to denote
that we are working in the Poissonized model. For instance,X̃l(τ) denotes thelth GEOM(p) RV in
the Poissonized model, i.e.,̃Xl(τ) corresponds toXl(n). It follows that urnl has exactlym balls with
probability 1

m! (τ
∗ql)me−τ∗ql

. So the generating function of̃Xl(τ) is

E(z eXl(τ)) =
(
1− 1

m!
(τ∗ql)me−τ∗ql

)
+ z

1
m!

(τ∗ql)me−τ∗ql

= 1 + (z − 1)
1
m!

(τ∗ql)me−τ∗ql

.

We haveX̃(τ) =
∑∞

l=1 X̃l(τ), and thus

G(τ, z) := E(z eX(τ)) = E(z
P eXl(τ)).

Since the urns are independent in the Poissonized model, thenE(z
P eXl(τ)) =

∏∞
l=1 E(z eXl(τ)). Thus

G(τ, z) =
∞∏

l=1

[
1 + (z − 1)

1
m!

(τ∗ql)me−τ∗ql

]
. (5.2)

We writeτ = Reit for realR ≥ 0 and−π < t ≤ π. Thus|τ | = R. We denote the linear cone containing
all τ with−π/4 ≤ t ≤ π/4 asSπ/4 = {τ = Reit | −π/4 ≤ t ≤ π/4}. Now we derive asymptotics about
the growth of|G(τ, z)| for τ ∈ Sπ/4. Our estimates are validuniformlyfor z ∈ Dε(1) = {t | |t− 1| ≤ ε}.
We encapsulate our results in the following lemma.

Lemma 5.2 For τ ∈ Sπ/4, there exist realsB > 0, R0 > 0, and0 < c < 1, such that if|τ | = R > R0

then
|G(τ, z)| ≤ B|τ |c

uniformly forz ∈ Dε(1).

Proof We first considerl ≥ 1 + logR. We have∏
l≥1+log R

∣∣E(z eXl(τ))
∣∣ =

∏
l≥1+log R

∣∣∣1 + (z − 1)
1
m!

(τ∗ql)me−τ∗ql
∣∣∣

≤
∏

l≥1+log R

[
1 + ε

1
m!

(|τ |pql−1)me−<(τ)pql−1
]

=
∏

l≥log R

[
1 + ε

1
m!

(|τ |pql)me−<(τ)pql
]

= exp
( ∑

l≥log R

ln
[
1 + ε

1
m!

(|τ |pql)me−<(τ)pql
])
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≤ exp
( ∑

l≥log R

[
ε

1
m!

(|τ |pql)me−<(τ)pql
])

(5.3)

where the inequality holds sinceln(1 + x) ≤ x for realx. We note that−<(τ) < 0 sinceτ ∈ Sπ/4. Thus

e−<(τ)pql ≤ 1. It follows that∏
l≥1+log R

∣∣E(z eXl(τ))
∣∣ ≤ exp

(
ε

1
m!

(|τ |p)m
∑

l≥log R

(qm)l

)

≤ exp
(
ε

1
m!

(|τ |pqlog R)m

1− qm

)
≤ exp

(
ε

1
m!

pm

1− qm

)
sinceqlog R = R−1 = |τ |−1

= O(1) (5.4)

Now we considerl ≤ logR. We have∏
l≤log R

∣∣∣E(z eXl(τ))
∣∣∣ ≤ ∏

l≤log R

(1 + ε) ≤ (1 + ε)log R = Rlog(1+ε) = |τ |c.

Combining these results, we have|G(τ, z)| = O(1)|τ |c = O(|τ |c) uniformly for z ∈ Dε(1). This
completes the proof of the lemma.

We return to the proof of Theorem 5.1. The lemma we just completed shows that condition (I) holds for
Theorem 10.3 of [17]. Now we prove that condition (O) of Theorem 10.3 of [17] holds too, namely: for
τ /∈ Sπ/4, there existA andα < 1 such that|G(τ, z)eτ | ≤ A exp(α|τ |) for |τ | > R0.

First considerτ /∈ Sπ/4 with <(τ) ≥ 0. Then the same proof given in the lemma above shows that
|G(τ, z)| = O(|τ |c) uniformly for z ∈ Dε(1). Thus|G(τ, z)eτ | = O(|τ |ce<(τ)), and<(τ) ≤ |τ |/

√
2 for

theseτ ’s, so by settingα = 1/
√

2, we conclude that condition (O) holds forτ /∈ Sπ/4 with <(τ) ≥ 0.
Now we considerτ with <(τ) < 0. By (5.3), we see that

∏
l≥1+log R

∣∣E(z eXl(τ))
∣∣ ≤ exp

( ∑
l≥log R

[
ε

1
m!

(|τ |pql)me−<(τ)pql
])
.

Note thate−<(τ)pql ≤ e−<(τ)pR−1
= e−p<(τ)/|τ | ≤ ep for all τ with <(τ) < 0 and all l’s with l ≥

1 + logR. So, proceding with reasoning similar to (5.4), we again see that∏
l≥1+log R

∣∣E(z eXl(τ))
∣∣ = O(1).

Also
∏

l≤log R

∣∣E(z eXl(τ))
∣∣ = |τ |c as before. So|G(τ, z)eτ | = O(|τ |ce<(τ)) = O(|τ |c) since<(τ) < 0.

Thus, anyα with 0 < α < 1 is sufficient to satisfy condition (O) when<(τ) < 0.
We conclude thatα = 1/

√
2 is sufficient to satisfy condition (O) whenτ /∈ Sπ/4.

Therefore, conditions (I) and (O) of Theorem 10.3 of [17] are all satisfied, so we can depoissonize our
results, i.e.,Πn(z) andG(τ, z) have the same asymptotics. More precisely,

Πn(z) = G(n, z) +O(nc−1).

Substitutingτ = n within (5.2), we see that

G(n, z) =
∞∏

l=1

[(
1− 1

m!
(n∗ql)me−n∗ql

)
+ z

1
m!

(n∗ql)me−n∗ql

]
,

and we note that0 < c < 1, so this completes the proof of Theorem 5.1.

Theorem 5.1 confirms the asymptotic independence assumption.
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The moments can be derived as follows. We obtain, settingz = es,

ln(Πn) ∼ S2(s) =
∞∑

l=1

ln [1 + (es − 1)B(m, l)]

=
∞∑

i=1

(−1)i+1(es − 1)iVi

i
, with

Vi :=
∞∑

l=1

[B(m, l)]i .

Let us first check that we can replace the Binomial by a Poisson distribution (see (5.1)) by computing a
suitable rate of convergence. We will consider three ranges. Let1/2 < β < 1.

• For j < β log n∗,B(m, j)k is small. Indeed

B(m, j)k ≤
[
n∗m exp(−n∗ 1−β)/m!

]k
.

• Forβ log n∗ ≤ j < 2 log n∗ we have

B(m, j)k − g(m, η)k ∼
[
g(m, η)[1 +O(1/n∗) +O(1/Qj) +O(n∗/Q2j)]

]k − g(m, η)k

= O(1/n∗ 2β−1).

• For j = 2 log n∗ + x, x ≥ 0, we have

B(m, j)k − g(m, η)k ∼
[
g(m, η)[1 +O(1/n∗) +O(1/n∗ 2) +O(n∗/n∗ 4)]

]k

− g(m, η)k

= O [1/(n∗mQmx)]k /n∗,

as
g(i, η) = O[1/(n∗Qx)i].

Now we must bound ∣∣∣ ∑
j

[B(m, j)k − g(m, η)k]
∣∣∣

which leads immediately toO(1/n∗ 2β−1−ε), ε small > 0.
SoVi is given by a harmonic sum, which we will compute by the Mellin transform. Sety = Q−η and

g(y) := [g(m, η)]k ,

the Mellin transform of which is

g∗(s) =
Γ(mk + s)
kmk+s(m!)k

.

This leads to

g∗(s)
Qs

1−Qs
,

with fundamental strip<(s) ∈ 〈−mk, 0〉. We obtain, by residues,

Vi ∼ Bi + βi(log n),

with

Bk =
(km− 1)!
m!kLkkm

,

βk =
∑
l 6=0

Γ(χl +mk)
Lkmk(m!)k

e−2lπi log(n∗k).

Note again the presence ofk in the exponent.
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The centered moments ofX can be obtained by analyzing

S3(s) := exp(S2(s)− sV1);

and finally, the moments are given by

m̃1 = B1,

w1 = β1,

µ̃2 = B1 −B2,

µ̃3 = B1 − 3B2 + 2B3,

κ2 = β1 − β2,

κ3 = β1 − 3β2 + 2β3.

The asymptotic distribution ofX can be derived from Louchard [12]. This leads with

Ψ3(η) = g(m, η)
∞∏

j=1

[1− g(m, η − j)] ,

Ψ4(η) =
∞∏

j=0

[1− g(m, η + j)]

to the following result.

Theorem 5.3 Setψ(n∗) := log n∗ − blog n∗c, then

P(X = u+ 1) ∼
∞∑

l=−∞

Ψ5

(
l − ψ(n∗)

)
,

with

Ψ5(η) = Ψ3(η − 1)Ψ4(η)
∑

w1>w2>···>wu≥0

u∏
i=1

{
g(m, η + wi)

/[
1− g(m, η + wi)

]}
.

Note that, contrariwise to the previous section, the RVX is hereO(1) in the sense that we do not have to
normalize bylog n∗.

5.2 Maximal non-empty urn
We derive, by asymptotic urn independence,

p(j) := P(M = j) ∼ B(m, j)
∞∏

i=j+1

[1−B(m, i)],

P (j) ∼
∞∏

i=j+1

[1−B(m, i)].

This leads to

p(j) ∼ f(η) = g(m, η)Ψ4(η + 1),
P (j) ∼ F (η) = Ψ4(η + 1).

We have here product forms: the rate of convergence for this kind of asymptotics is fully detailed in
Louchard and Prodinger [13]. We can now proceed as in Section 4.3.

5.3 First full urn
SetE := inf{i : Xi = 1}.

Note the difference with Section 4.3, where we were concerned by the first empty urn; that question
would not make sense here since the first ‘empty’ urn (6= m elements) would be urn 1 with very high
probability.
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We obtain

p(j) ∼ B(m, j)
j−1∏
i=1

[1−B(m, i)],

P (j) ∼ 1−
j∏

i=1

[1−B(m, i)].

This leads to

p(j) ∼ f(η) = Ψ3(η),

P (j) ∼ F (η) = 1−
∞∏

j=0

[1− g(m, η − j)] .

We can now proceed as in Section 4.3. We don’t give more details here.

6 Multiplicity at least m
We again consider fixedm = O(1). Set

Xi(n) := [[valuei appears among then GEOM(p) RV with multiplicity at leastm]].

We have

P[Xj(n) = 0] = T (j) :=
m−1∑
i=0

B(i, j).

Again, in the range given byj ≥ log n∗ we can use the Poisson approximation:

P[Xj(n) = 1] ∼ 1−R(j, n), (6.1)

with

R(j, n) :=
m−1∑
i=0

1
i!

(n∗qj)i exp(−n∗qj).

Setting againη := j − log n∗, we deriveP[Xj(n) = 1] ∼ 1− g(η) with

g(η) :=
m−1∑
i=0

g(i, η).

6.1 Number of distinct values

SetX(n) :=
∞∑

i=1

Xi(n). We must first check the asymptotic independency of the urns. Let us consider

Πn(z) = E(zX(n)). We are again interested in the behaviour ofΠn(z) for complexz ∈ Dε(1) = {t | |t−
1| ≤ ε}, whereε is a small fixed positive real number. We chooseε > 0 such thatc := log(1 + ε) < 1.

Theorem 6.1 We have

Πn(z) ∼
∞∏

l=1

[
R(l, n) + z(1−R(l, n))

]
, n→ ∞.

uniformly forz ∈ Dε(1), where0 < c = log(1 + ε) < 1.

Proof
We again use the urn model. As before, we replace thefixednumbern of balls withN balls, whereN is a
Poisson random variable withE(N) = τ . Thus, the urns areindependent, and the number of balls in urnl
is a Poisson random variable with parameterτ∗ql. Again we use a “̃ ” to denote the Poissonized model.
It follows that urnl has exactlyi balls with probability 1

i! (τ
∗ql)ie−τ∗ql

. So the generating function of

X̃l(τ) is

E(z eXl(τ)) = R(l, τ) + z(1−R(l, τ)) = 1 + (z − 1)(1−R(l, τ)).
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We haveX̃(τ) =
∑∞

l=1 X̃l(τ), and thus

G(τ, z) := E(z eX(τ)) = E(z
P eXl(τ)).

Since the urns are independent in the Poissonized model, thenE(z
P eXl(τ)) =

∞∏
l=1

E(z eXl(τ)). Thus

G(τ, z) =
∞∏

l=1

[
1 + (z − 1)(1−R(l, τ))

]
. (6.2)

We again writeτ = Reit for realR ≥ 0 and−π < t ≤ π. Thus|τ | = R. We again consider the linear
coneSπ/4 = {τ = Reit | − π/4 ≤ t ≤ π/4}. Now we derive asymptotics about the growth of|G(τ, z)|
for τ ∈ Sπ/4. Our estimates are validuniformly for z ∈ Dε(1) = {t | |t − 1| ≤ ε}. We encapsulate our
results in the following lemma.

Lemma 6.2 For τ ∈ Sπ/4, there exist realsB > 0, R0 > 0, and0 < c < 1, such that if|τ | = R > R0

then
|G(τ, z)| ≤ B|τ |c

uniformly forz ∈ Dε(1).

Proof We first considerl ≥ 1 + logR. We have∏
l≥1+log R

∣∣E(z eXl(τ))
∣∣ =

∏
l≥1+log R

∣∣1 + (z − 1)(1−R(l, τ))
∣∣

=
∏

l≥1+log R

∣∣∣∣1 + (z − 1)
∞∑

i=m

1
i!

(τ∗ql)ie−τ∗ql

∣∣∣∣
≤

∏
l≥1+log R

[
1 + ε

∞∑
i=m

1
i!

(|τ |pql−1)ie−<(τ)pql−1
]

=
∏

l≥log R

[
1 + ε

∞∑
i=m

1
i!

(|τ |pql)ie−<(τ)pql

]

= exp
( ∑

l≥log R

ln
[
1 + ε

∞∑
i=m

1
i!

(|τ |pql)ie−<(τ)pql

])

≤ exp
( ∑

l≥log R

[
ε

∞∑
i=m

1
i!

(|τ |pql)ie−<(τ)pql

])

where the inequality holds sinceln(1 + x) ≤ x for realx. We note that−<(τ) < 0 sinceτ ∈ Sπ/4. Thus

e−<(τ)pql ≤ 1. It follows that

∏
l≥1+log R

∣∣E(z eXl(τ))
∣∣ ≤ exp

(
ε

∞∑
i=m

1
i!

(|τ |p)i
∑

l≥log R

(qi)l

)

≤ exp
(
ε

∞∑
i=m

1
i!

(|τ |pqlog R)i

1− qi

)

≤ exp
(
ε

∞∑
i=m

1
i!

pi

1− qi

)
sinceqlog R = R−1 = |τ |−1

≤ exp
(

ε

1− q

∞∑
i=m

1
i!
pi

)
since1/(1− qi) ≤ 1/(1− q)

≤ exp
( ε

1− q
ep

)
= O(1).
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Now we considerl ≤ logR. We have∏
l≤log R

∣∣∣E(z eXl(τ))
∣∣∣ ≤ ∏

l≤log R

(1 + ε) ≤ (1 + ε)log R = Rlog(1+ε) = |τ |c.

Combining these results, we have|G(τ, z)| = O(1)|τ |c = O(|τ |c) uniformly for z ∈ Dε(1). This
completes the proof of the lemma.

Now we return to the proof of Theorem 6.1. The lemma we just completed shows that condition (I)
holds for Theorem 10.3 of [17]. Similar reasoning as in Theorem 5.1 shows that condition (O) holds too,
namely: forτ /∈ Sπ/4, there existsA andα < 1 such that|G(τ, z)eτ | ≤ A exp(α|τ |) for |τ | > R0.

So the assumptions of Theorem 10.3 of [17] are all satisfied; therefore, we can depoissonize our results.
In other words,Πn(z) andG(τ, z) have the same asymptotics. More precisely,

Πn(z) = G(n, z) +O(nc−1).

Substitutingτ = n within (6.2), we see that

G(n, z) =
∞∏

l=1

[
R(l, n) + z(1−R(l, n))

]
,

and we note that0 < c < 1, so this completes the proof of Theorem 6.1.

Theorem 6.1 confirms the asymptotic independence assumption.
Now with asymptotic independence of the urns representing each integer,

E(eαX) ∼ exp
[ ∞∑

j=1

ln
(
1 + (eα − 1)(1− T (j))

)]
= exp

[ ∞∑
l=1

(−1)l+1

l
(eα − 1)lVl

]
,

with

Vl :=
∞∑

j=1

(
1− T (j)

)l
.

We obtain

Vl =
∞∑

j=1

{ l∑
k=0

(−1)k

(
l

k

)
T (j)k

}

=
∞∑

j=1

{ l∑
k=0

(−1)k

(
l

k

)
T (j)k −

l∑
k=0

(
l

k

)
(−1)k

}

=
l∑

k=1

(
l

k

)
(−1)k+1Sk, with

Sk :=
∞∑

j=1

(
1− T (j)k

)
.

First of all, let us check that, for largen, T (j), as a function ofj, is an honest distribution function in the
sense that it is monotonous inj. Consideringj as a continuous variable, we obtain

T ′(j) = −L
m−1∑
i=0

B(i, j)(i− n∗qj)/(1− pqj−1).

But to the left of the concentration domain,n∗qj � m, so thatT ′(j) > 0. In and to the right of the
concentration domain, the Poisson approximation leads, withλ := e−Lη, to

m−1∑
i=0

e−λλi/i!(i− λ) = −e−λλm/(m− 1)! < 0
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and again,T ′(j) > 0. Settingη = j − log(n∗), this leads to

T (j)k ∼ G(η) := g(η)k,

andSk is the mean of the RV with distribution functionT (j)k, minus1 (as the sum starts here atj = 1).
Now we need a rate of convergence. This is computed as follows. We will consider three ranges. Let

1/2 < β < 1.

• For j < β log n∗, T (j)k is small. Indeed

T (j)k ≤
[
mn∗m exp(−n∗ 1−β)

]k
.

• Forβ log n∗ ≤ j < 2 log n∗ we have

T (j)k − g(η)k =
[ m−1∑

i=0

B(i, j)
]k

−
[ m−1∑

i=0

g(i, η)
]k

∼
[ m−1∑

i=0

g(i, η)[1 +O(1/n∗) +O(1/Qj) +O(n∗/Q2j)]
]k

−
[ m−1∑

i=0

g(i, η)
]k

= mkO
(
1/n∗ 2β−1

)
.

• For j = 2 log n∗ + x, x ≥ 0, we have

T (j)k − g(η)k ∼
[
g(0, η)[1 +O(n∗/(n∗ 4Q2x))]

+
m−1∑
i=1

g(i, η)[1 +O(1/n∗) +O(1/n∗ 2) +O(n∗/n∗ 4)]
]k

−
[ m−1∑

i=0

g(i, η)
]k

∼ mkO [1/(n∗Qx)]k /n∗

as
g(i, η) = O

[
(1/(n∗Qx)i)

]
.

We can then proceed as in Section 5.1.
Now we return to the main problem: compute the mean of the distribution function

T (j)k ∼ G(η) := g(η)k.

• Let us first consider the casek = 1. This leads fori = 0 to

ϕ1(α) =
∫ ∞

−∞
eαxg′(0, x)dx = Γ(1− α̃), <(α) < L.

Next, we derive

ϕ2(α) =
∫ ∞

−∞
eαx

m−1∑
i=1

g′(i, x)dx = −αM1(α)

with

M1(α) =
m−1∑
i=1

Γ(i− α̃)
Li!

, <(α) < L.

This leads to
φ(α) = −M1(α)(eα − 1) + Γ(1− α̃)(eα − 1)/α.

Proceeding as in Section 3 and as in the trie case (see [13]) we obtain

S1 ∼ log n∗ +
γ

L
− 1

2
−M1(0) + β1,1 +O(1/n)

with M1(0) = Hm−1/L and

β1,1 =
1
L

∑
l 6=0

[
−

m−1∑
i=1

Γ(i+ χl)
i!

− Γ(χl)
]
e−2lπi log n∗ = − 1

L

∑
l 6=0

Γ(m+ χl)
χl(m− 1)!

e−2lπi log n∗ ,

by induction, which is exactly the expression given in [1].
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• Fork = 2, we derive similarly

ϕ1(α) = 2eαΓ(1− α̃),
ϕ2(α) = −αM2(α),

M2(α) =
1
L

m−1∑
i=0

m−1∑
v=0

[[v + i 6= 0]]
2eαΓ(i+ v − α̃)

2i+vi!v!
.

This leads to

S2 ∼ log n∗ + log 2 +
γ

L
− 1

2
−M2(0) + β1,2 +O(1/n),

with

β1,2 =
∑
l 6=0

[
− M2(α)|eα=−χl

− 2−χlΓ(χl)/L
]
e−2lπi log n∗

= −
∑
l 6=0

m−1∑
i=0

m−1∑
v=0

Γ(i+ v + χl)
2i+vi!v!L

e−2lπi log(2n∗).

• For generalk we finally obtain

Sk ∼ log n∗ + log k +
γ

L
− 1

2
−Mk(0) + β1,k +O(1/n),

with

Mk(α) =
m−1∑
i1=0

· · ·
m−1∑
ik=0

[[i1 + · · ·+ ik 6= 0]]
keαΓ(i1 + . . .+ ik − α̃)
ki1+···+ik i1! . . . ik!L

,

β1,k = −
∑
l 6=0

m−1∑
i1=0

. . .
m−1∑
ik=0

Γ(i1 + · · ·+ ik + χl)
ki1+···+ik i1! . . . ik!L

e−2lπi log(kn∗).

Note again the presence ofk in the exponent.

This gives

Vl ∼ log n∗ − 1/2 + γ/L+Bl + Cl + βl, with

Bl :=
l∑

k=2

(
l

k

)
(−1)k+1 log k,

βl =
l∑

k=1

(
l

k

)
(−1)k+1β1,k,

Cl =
l∑

k=1

(
l

k

)
(−1)k+1(−Mk(0))

and, finally

E(eαX) = exp
[
α(log n∗ − 1/2 + γ/L) +

∞∑
l=2

(−1)l+1

l
(eα − 1)lBl +

∞∑
l=1

(−1)l+1

l
(eα − 1)lβl

+
∞∑

l=1

(−1)l+1

l
(eα − 1)lCl +O(1/n)

]
.

From this, we derive

Θp(α) = exp
[ ∞∑

l=2

(−1)l+1

l
(eα − 1)lBl +

∞∑
l=1

(−1)l+1

l
(eα − 1)lβl



The number of distinct values of some multiplicity in sequences of geometrically distributed random variables249

+
∞∑

l=1

(−1)l+1

l
(eα − 1)lCl − α(−M1(0) + β1,1)

]
,

and the moments ofX − log n∗ are given by

m̃1 =
γ

L
− 1

2
−M1(0),

w1 = β1,1,

µ̃2 = log 2 +M1(0)−M2(0),
µ̃3 = −3 log 2 + 2 log 3−M1(0) + 3M2(0)− 2M3(0),
κ2 = β1,2 − β1,1,

κ3 = β1,1 − 3β1,2 + 2β1,3.

The quantitiesm̃1, w1, µ̃2 are given in Archibald, Knopfmacher and Prodinger [1]. Since they look
somehow different, here is a

Direct proof that the two expressions for the variance coincide.
What is denoted̃µ2 here, comes out in [1] as

log 2 +
2
L

∑
i≥1

(−1)i+m−1

i(Qi − 1)

(
i+m− 1

i

)(
i− 1
m− 1

)
− 2
L

m−1∑
j=1

1
2j

(
2j
j

) ∑
h≥0

(
−2j
h

)
1

Qh+j − 1

+
2
L

∑
h≥1

(−1)h−1

h(Qh − 1)
− 1
L

m−1∑
j=1

1
2j

(
2j
j

)
2−2j .

So we are left to prove that

2
∑
i≥1

(−1)i+m−1

i(Qi − 1)

(
i+m− 1

i

)(
i− 1
m− 1

)
− 2

m−1∑
j=1

1
2j

(
2j
j

) ∑
h≥0

(
−2j
h

)
1

Qh+j − 1

+ 2
∑
h≥1

(−1)h−1

h(Qh − 1)
−

m−1∑
j=1

1
2j

(
2j
j

)
2−2j = −

m−1∑′

i,j=0

(i+ j − 1)!
i!j!

2−i−j +Hm−1,

where the dashed sum means that the termi = j = 0 has to be excluded. If we take the diagonal out of
the sum with the dash, we are left to prove:

∑
i≥1

(−1)i+m−1

i(Qi − 1)

(
i+m− 1

i

)(
i− 1
m− 1

)
−

m−1∑
j=1

1
2j

(
2j
j

) ∑
h≥0

(
−2j
h

)
1

Qh+j − 1

+
∑
h≥1

(−1)h−1

h(Qh − 1)
= −

∑
0≤i<j<m

(i+ j − 1)!
i!j!

2−i−j +
1
2
Hm−1

or

∑
i≥1

(−1)i

i(Qi − 1)

(
−i− 1
m− 1

)(
i− 1
m− 1

)
−

∑
i≥1

(−1)i

Qi − 1

min(m−1,i)∑
j=1

(−1)j(i+ j − 1)!
j!j!(i− j)!

−
∑
i≥1

(−1)i

i(Qi − 1)
= −

∑
0≤i<j≤m−1

(i+ j − 1)!
i!j!

2−i−j +
1
2
Hm−1;

notice that the right side does not depend onQ! Now we evaluate one appearing sum form > i ≥ 1:

min(m−1,i)∑
j=1

(−1)j(i+ j − 1)!
j!j!(i− j)!

=
i∑

j=0

(−1)j(i+ j − 1)!
j!j!(i− j)!

− 1
i

=
1
i

i∑
j=0

(
−i
j

)(
i

i− j

)
− 1
i
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=
1
i

(
0
i

)
− 1
i

= −1
i
,

by Vandermonde’s convolution. Thus we are left to prove that

∑
i≥m

(−1)i

i(Qi − 1)

(
−i− 1
m− 1

)(
i− 1
m− 1

)
−

∑
i≥m

(−1)i

Qi − 1

m−1∑
j=1

(−1)j(i+ j − 1)!
j!j!(i− j)!

−
∑
i≥m

(−1)i

i(Qi − 1)
= −

∑
0≤i<j<m

(i+ j − 1)!
i!j!

2−i−j +
1
2
Hm−1.

We will achieve that by proving that both sides are actually zero!
We treat the right side by induction onm, the instancem = 1 being clear. The induction step amounts

to prove that ∑
0≤i<m

(i+m− 1)!
i!m!

2−i−m =
1

2m
,

or ∑
0≤i<m

(i+m− 1)!
i!(m− 1)!

2−i = 2m−1,

which is the “unexpected” sum (5.20) in [5].
Now we turn to the left side; we need to show that fori ≥ m,(

−i− 1
m− 1

)(
i− 1
m− 1

)
− i

m−1∑
j=1

(−1)j(i+ j − 1)!
j!j!(i− j)!

− 1 = 0,

or (
−i− 1
m− 1

)(
i− 1
m− 1

)
=

m−1∑
j=0

(
−i
j

)(
i

j

)
.

This follows from Euler’s identity [5, ex. 28, p. 244], or can simply be proved by induction.
This finishes the proof.
Remark. We learn from this computation that the expression forµ̃2 canstill be simplified:

µ̃2 = log 2− 1
L

∑
1≤i<m

(2i− 1)!
i!i!

2−2i.

Now we continue after this intermezzo.— The asymptotic distribution ofX is given by the following

result:

Theorem 6.3 Setη := j − log n∗ and

Ψ6(η) := g(η)
∞∏

i=1

[1− g(η − i)].

Then, withj integer andη = O(1),

P(X = j) ∼ f(η) =
∞∑

u=0

Ψ6(η − u+ 1)
∞∏

w=2−u

g(η + w)
∑

r1<...<ru
rj≥2−u

u∏
i=1

1− g(η + ri)
g(η + ri)

,

P(X ≤ j) ∼ F (η), with F (η) :=
∞∑

i=0

f(η − i).
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6.2 Maximal non-empty urn

6.2.1 General multiplicity m

We have here

p(j) := P(M = j) ∼ (1− T (j))
∞∏

i=j+1

T (i),

P (j) ∼
∞∏

i=j+1

T (i),

and this leads to

p(j) ∼ f(η) = (1− g(η))Ψ7(η),
P (j) ∼ F (η) = Ψ7(η),

(6.3)

with

Ψ7(η) =
∞∏

i=1

g(η + i).

Now we could proceed as in Section 4.3.

6.2.2 Particular case m = 2

In the following we use a different approach and work out the details form = 2. The reason for this
restriction is that the results are more appealing in this case; Euler’s partition identity allows to expand a
product into a sum, and there is nothing equivalent form > 2. This can be compared with the analysis in
[4] and the analysis in [10]; the latter does not have the nice explicit seriesN(s).

We can computeP (j) by noticing that there are somek elements which fall into urns numbered> j,
but are alone in their urn, and the remainingn − k elements which are in urns with numbers≤ j, but no
further restrictions. Thus

P (j) := P[X ≤ j] =
n∑

k=0

(
n

k

)
(1− qj)n−kk!

∑
j<λ1<···<λk

pqλ1−1 . . . pqλk−1

=
n∑

k=0

(
n

k

)
(1− qj)n−kk!pkqjk

∑
0≤λ1<···<λk

qλ1+···+λk

=
n∑

k=0

(
n

k

)
(1− qj)n−kk!pkqjk[zk]

∏
l≥0

(1 + zql)

=
n∑

k=0

(
n

k

)
(1− qj)n−kk!pkqjk q

(k
2)

(q)k
,

by one of Euler’s partition identities.
After these preliminaries, we consider the asymptotic form. We have

P (j) =
n∑

u=0

(pqj)uq(
u
2)n!

(q)u(n− u)!
(1− qj)n−u. (6.4)

Settingη = j − log n, we obtain
P (j) ∼ F (η),

with

F (η) =
∞∑

u=0

puq(
u
2)

(q)u
e−Luη exp(−e−Lη). (6.5)
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Let us first check the equivalence of (6.5) withΨ7(η) given by

Ψ7(η) =
∞∏

k=1

exp
(
−e−L(eη+k)

) [
1 + e−L(eη+k)

]
,

with
η̃ = j − log n∗ = η − log

p

q
.

This leads to

Ψ7(η) =
∞∏

k=1

exp
(
−e−Lηpqk−1

) [
1 + e−Lηpqk−1

]
= exp

(
e−Lη

) ∞∏
k=1

[
1 + e−Lηpqk−1

]
.

(6.6)

Now, again by Euler’s identity, (6.5) gives

F (η) = exp(−e−Lη)
∞∏

k=0

[
1 + e−Lηpqk

]
,

which is equivalent to (6.6).
Let us now compute the rate of convergence. We must bound|P (j)− F (η)|. Let 0 < β < 1. We will

consider three ranges

• For j < β log n, P (j) is small. Indeed

P (j) ≤ exp(−n1−β)/K
∞∑

u=0

qu(u−1)/2pu

(1− qj)u
qjunu.

The sum is bounded by
∞∑

u=0

qu2/2nu,

which we can estimate by the Euler–Maclaurin formula (or by the Mellin transform). The sum is
asymptotically given by

exp(L log2 n/2)
√

2π/L.

Note that the maximum of the quadratic form in the exponent occurs atu∗ = log n.

• Forβ log n ≤ j < 2 log n, we setδ := e−Lη. Note that1/n ≤ δ ≤ n1−β .

Now we use the “sum splitting technique.” Setr = n1/4.

1. truncating the sum in (6.4) tor leads to an errorE1:

E1 ≤
n∑

u=r

qu(u−1)/2

K
δue−δ ≤ e−Ln1/2

E11/K,

where

E11 = O[exp(L(1− β)n1/4 log n) exp(−n1−β)], if δ = n1−β , asr � u∗ = (1− β) log n,
E11 = O(1) if δ = 1,

E11 = O(exp(−Ln1/4 log n)), if δ = 1/n.

2. replacing n!
nu(n−u)! in the truncated sum by1 leads to a relative error−u2/n (by Stirling),

which leads to an errorE2:

E2 ≤
r∑

u=1

qu(u−1)/2

K
δue−δu2/n.
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This gives

E2 ≤
r∑

u=1

qu2/2

K
(n1−σ)ue−n1−σ

u2/n, if δ = n1−σ.

Now we use the standard saddle point technique: the saddle point is

u∗ = (1− σ) log n+ 2/(L(1− σ) log n) +O(1/ log3 n),

and this leads to

E2 ≤ exp[L/2(1− β)2(log2 n+O(log log n))]e−n1−β

/(Kn), if δ = n1−β ,

E2 = O(1/n), if δ = 1,

E2 = O(1/n2), if δ = 1/n.

3. replacing(1− qj)n−1 in the truncated sum byexp(−e−Lη) leads to a relative error
nq2j = δ2/n which gives an errorE3:

E3 ≤
r∑

u=0

qu(u−1)/2

K
δuδ2e−δ/n.

This gives

E3 ≤
r∑

u=0

qu2/2

K
n(1−σ)(u+2)e−n1−σ

/n, if δ = n1−σ,

and this leads to

E3 ≤ exp[L/2(1− β)2(log2 n+O(log n))]e−n1−β

/(Kn), if δ = n1−β ,

E3 = O(1/n), if δ = 1,

E3 = O(1/n3), if δ = 1/n.

4. completing the sum in (6.5) leads to an errorE4:

E4 ≤
n∑

u=r

qu(u−1)/2pu

K
δue−δ,

which is analyzed asE1.

• For j = 2 log n+ x, x ≥ 0, we haveδ = 1/(nQx). Set againr = n1/4.

1. truncating the sum in (6.4) tor leads to an errorE1:

E1 ≤ e−Ln1/2/2e−L(log n+x)n1/4
/K,

2. replacing n!
nu(n−u)! in the truncated sum by1 leads to an errorE2:

E2 = O(1/(n2Qx)),

3. replacing(1− qj)n−1 in the truncated sum byexp(−e−Lη) leads to a an errorE3:

E3 = O[1/(n3Q2x)],

4. completing the sum in (6.5) leads to an errorE4:

E4 ≤
n∑

u=r

qu(u−1)/2pu

K
δue−δ,

which is analyzed asE1.
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Now we can bound the difference between the moments ofX and the moments based onF (η):∣∣∣∣ ∑
j

jk
(
[P (j)− P (j − 1)]− [F (η)− F (η − 1)]

)∣∣∣∣
≤ 2

[
O

(
(β log n∗)k+1 exp(−n1−β−ε)

)
+ (2 log n∗)k+1O(1/n) +O

( ∑
x≥0

(2 log n∗ + x)kQ−x/n2
)]

= O(1/n1−ε),

whereε is any small positive real number. Now we turn to the moments. We obtain

ϕ(α) = Γ(1− α̃)− α
∞∑

u=1

V (u)Γ(u− α̃)/L,

with

α̃ := α/L, <(α) < L, V (u) :=
puq(

u
2)

(q)u
.

We recognize the trie expression in the first part. Note also thatϕ(0) = 1 as it should. The second part of
ϕ(α) leads to

φ2(α) = −(eα − 1)
∞∑

u=1

V (u)Γ(u− α̃)/L.

Setα̃ = −s, s = σ + it, σ ≥ 0. Using (3.7),|φ2(α)| is bounded by

O
( ∞∑

u=1

qu(u−1)/2pu

(q)∞
|t|u+σ−1/2e−π|t|/2

)
= O

(
eL log2(|t|)/2

)
|t|σ−1/2e−π|t|/2

which is exponentially decreasing. Now we set

C1 :=
∞∑

u=1

V (u)Γ(u),

C2 :=
∞∑

u=1

V (u)Γ(u)ψ(u),

C3 :=
∞∑

u=1

V (u)Γ(u)ψ(1, u),

C4 :=
∞∑

u=1

V (u)Γ(u)ψ2(u).

This leads to

m1 = (γ − C1)/L,

m2 = (π2/6 + γ2 + 2C2)/L2,

m3 = (2ζ(3) + π2γ/2 + γ3 − 3C3 − 3C4)/L3,

m̃1 = m1 + 1/2,

m̃2 = m1 + 1/3 + (π2/6 + γ2 + 2C2)/L2,

m̃3 = m1 + 1/4 + (π2/4 + 3γ2/2 + 3C2)/L2 + (2ζ(3) + π2γ/2 + γ3 − 3C3 − 3C4)/L3,

σ2 = (π2/6 + γ2 + 2C2)/L2 −m2
1,

µ3 = 2m3
1 + (−3m1γ

2 −m1π
2/2− 6m1C2)/L2 + (2ζ(3) + π2γ/2 + γ3 − 3C3 − 3C4)/L3,
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µ̃2 = (π2/6 + γ2 + 2C2)/L2 −m2
1 + 1/12,

µ̃3 = µ3.

Let us now turn to the fluctuating components. The fundamental strip fors is<(s) ∈ 〈−1, 0〉. First of
all, (3.3) and (3.4) lead to

w1 = −
∑
l 6=0

[
Γ(χl) +

∞∑
u=1

V (u)Γ(u+ χl)
]
e−2lπi log n/L.

Equations (3.5) and (3.6) lead, after the usual simplifications necessary to help Maple, to

κ2 = 2
∑
l 6=0

[
Γ(χl)ψ(χl) +

∞∑
u=1

V (u)Γ(u+ χl)ψ(u+ χl)
]
e−2lπi log n/L2 − 2m1w1 − w2

1,

κ3 =
∑
l 6=0

[
− 3Γ(χl)ψ(1, χl)− 3Γ(χl)ψ2(χl)− 6Γ(χl)ψ(χl)L(w1 +m1)

+
∞∑

u=1

(−3V (u)Γ(u+ χl)ψ(1, u+ χl)− 6V (u)Γ(u+ χl)ψ(u+ χl)L(m1 + w1)

− 3V (u)Γ(u+ χl)ψ2(u+ χl))
]
e−2lπi log n/L3

+ [4w3
1L

2 + 12m2
1w1L

2 + 12m1w
2
1L

2 − π2w1 − 6γ2w1 − 12C2w1]/(2L2).

6.3 First empty urn
SetE := inf{i : Xi = 1}. We obtain

p(j) ∼ T (j)
j−1∏
i=1

[1− T (i)],

P (j) ∼ 1−
j∏

i=1

[1− T (i)].

This leads to

p(j) ∼ f(η) = Ψ6(η),
P (j) ∼ F (η) = 1−Ψ8(η),

with

Ψ8(η) :=
∞∏

i=0

(1− g(η − i)).

We proceed now exactly as in Section 4.3 and we derive all moments. We recognize here the split-
ting process arising inprobabilistic counting: see Kirschenhofer, Prodinger and Szpankowski [10]. The
quantitiesm̃1, µ̃2 andw1 are given in their paper. We don’t give more details in this subsection.

7 Conclusion
If we compare the approach in this paper with other ones that appeared previously, then we can notice
the following. Traditionally, one would stay with exact enumerations as long as possible, and only at a
late stage move to asymptotics. Doing this, one would, in terms of asymptotics, carry many unimportant
contributions around, which makes the computations quite heavy, especially when it comes to higher mo-
ments. Here, however, approximations are carried out as early as possible, and this allows for streamlined
(and often automatic) computations of the higher moments.

One of the referees asked the question: can this work be extended to other distributions under conditions
of exponentially decreasing tails? Indeed, this can be done, but at the expense of less explicit formulæ.
Another interesting problems would be to consider Carlitz compositions (where two successive parts are
different) and other Markov chains (see [13]). This will be the object of future work.
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