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Abstract

We consider a randomized selection algorithm that has n
initial participants and a moderator. In each round of the
process, each participant and the moderator throw a bi-
ased coin. Only the participants who throw the same result
as the moderator stay in the game for subsequent rounds.
With probability 1, all participants are eliminated in finitely
many rounds. We let M,, denote the number of participants
remaining in the game in the last nontrivial round. This
simple algorithm has surprisingly many interesting applica-
tions. In particular, it models (asymptotically) the number
of longest prefixes in the Lempel-Ziv ’77 data compression
scheme. Such multiplicity was used recently in [13] to design
an error-resilient LZ’77 scheme.

We give precise asymptotic characteristics of the jth
factorial moment of M, for all j € N. Also, we present
a detailed asymptotic description of the exponential gener-
ating function for M,. In particular, we exhibit periodic
fluctuation in the distribution of M,,, and we prove that no
limiting distribution exists (however, we observe that the
asymptotic distribution follows the logarithmic series dis-
tribution plus some fluctuations). The results we develop
are proved by probabilistic and analytical techniques of the
analysis of algorithms. In particular, we utilize recurrence
relations, analytical poissonization and depoissonization, the
Mellin transform, and complex analysis.

1 Introduction.

We consider a randomized selection algorithm that has
n initial participants and a moderator. At the outset,
n participants and one moderator are present. Each
has a biased coin with probability p of showing heads
when flipped, and we write ¢ = 1 — p. At each stage of
the selection process, the moderator flips its coin once;
participants remain for subsequent rounds if and only if
their result agrees with the moderator’s result. Note
that all participants are eliminated in finitely many
rounds with probability 1. We let M,, denote the
number of participants remaining in the last nontrivial
round (i.e., the final round in which some participants
still remain). Equivalent descriptions of the algorithm
are given in the next section.

Briefly we explain the algorithm in terms of tries.
Consider a trie built from strings of 0’s and 1’s drawn
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from an i.i.d. source. We restrict attention to the situ-
ation where n such strings have already been inserted
into a trie. When the (n + 1)-st string is inserted into
the trie, M,, denotes the size of the subtree that starts
at the insertion point of this new string.

The results of our analysis of M, yield information
about the redundancy in the LZ’77 algorithm [18]. In
LZ’77, for a given training sequence Xi,...,X,, the
next phrase is the longest prefix of the uncompressed
sequence X411, Xpt2,... that occurs at least once in
the training sequence Xj,...,X,. Such a phrase can
be found by building a suffix tree from the training
sequence and inserting the (n + 1)-st suffix into the
tree. The depth of insertion is the length of the next
LZ’77 phrase and the size of the subtree starting at
the insertion point represents the number of potential
phrases (i.e., any phrase can be chosen for encoding).
The latter quantity is asymptotically equivalent to
our M, (constructed for independent tries) with an
error bound of O(logn/n) (cf. [9, 16]). Finally, we
observe that multiplicity of LZ’77 phrases is used in
Lonardi and Szpankowski [13] to design an error resilient
LZ’77 scheme called LZRS’77 (the “RS” denotes Reed-
Solomon error-correcting coding). Thus precise analysis
of M, allows us to obtain detailed information about
the redundancy of LZ’77 and its error resilient version
LZRS’77.

Related problems have been studied. For instance,
suppose the moderator is replaced; instead, participants
remain in the selection process if and only if they throw
heads. Also, if M,, # 1, then the selection process
is deemed inconclusive and the entire selection pro-
cess is repeated. Finally, H, denotes the number of
rounds until the selection process determines a conclu-
sive “leader.” Prodinger [14] first posed this problem
and made a non-trivial analysis, but he considered fair
(unbiased) coins. Then Fill et. al. [3] found the limit-
ing distribution of the number of rounds, but they also
utilized fair coins. Recently, Janson and Szpankowski
[11] gave precise asymptotic information about E[H,],



Var[H,], and the distribution of H,; we note that the
analysis in [11] dealt with biased coins.

A wealth of results have been published that are
pertinent to the methodology developed below (see
especially [4] and [17]). We strongly emphasize that
these methods are widely applicable to a great variety
of other problems. The precise asymptotic descriptions
of the distribution of M, and the factorial moments
of M, should entice others to continue utilizing such
methods in studying related problems.

We establish the asymptotic distribution of M,, and
the factorial moments of M,,. Note that a first order
asymptotic solution for the distribution and the fac-
torial moments in a cone about the positive x axis is
not too difficult to obtain, but a second order asymp-
totic solution is relatively much more difficult to derive.
Our method is to first poissonize the problem. In other
words, we no longer require n to be fixed, but instead
we let the number of initial participants in the selection
process be a random variable that is Poisson distributed
with mean n. Then we utilize the Mellin transform
and analytic methods to obtain asymptotic solutions in
the Poisson model. Finally, we depoissonize the results
to obtain the asymptotic distribution and factorial mo-
ments of M, both accurate to second order. Interest-
ingly, when In p/ In ¢ is rational, we note that the asymp-
totic distribution and factorial moments of M,, exhibit
fluctuations. Therefore M, does not have a limiting dis-
tribution or limiting factorial moments, but we provide
precise formulas for both quantities. In particular, we
prove that the asymptotic distribution of M, follows the
logarithmic series distribution (plus some fluctuations),
that is, P(M, = j) ~ 1/ (1 - p) + (1 - p)p)/j
where h is the entropy rate.

Our results are organized in the following way: In
the next section, two theorems are given. Theorem 1
provides a precise asymptotic description of the distri-
bution of M,,. Then Theorem 2 gives analogous results
for the factorial moments of M,,. Both theorems con-
tain results which are second order accurate. Then we
briefly discuss the consequences of the two theorems. In
particular, we elaborate on the fluctuations mentioned
above. In the third section, we prove both theorems. As
we just mentioned briefly, our methodology uses pois-
sonization. So we utilize a depoissonization lemma, of
Jacquet and Szpankowski (see [10] and [17]).

2 Main Results.

We first give a mathematically rigorous formulation
of the problem to be analyzed. Let p be fixed with
0 < p <1, and write ¢ = 1 — p. Define X(j) to be
the string XfJ)XéJ)X?E])..., where {Xz.(J) | i,j € N} is
a collection of i.i.d. random variables on {0,1}, with

P{X) =0} =p. Let I{” =sup{i > 0| X ... X7 =

Xl(”'H) ...Xi("“)}. In other words, when comparing

the jth and (n + 1)st strings, let l§") denote the length
of the longest common prefix of these two strings. Then
define L, = maxj5nl§"). In other words, among the
first n strings, let L, denote the length of the longest
common prefix with the (n+1)-st string. Finally, define
Mp=#{j|1<j<n 1" =L} So M, is the
number of the first n strings that have a common prefix
of length L,, with the (n + 1)-st string. By convention,
let My = 0. In passing we observe that if the strings
X(1),...,X(n) are suffixes of a single string, then our
M,, is asymptotically equivalent to the multiplicity of
phrases in the LZ’77 scheme.

Now we present the problem from the viewpoint
of tries. The alignment Cj, .. ;, among k strings
X (1), -, X (jx) is the length of the longest common
prefix of the k strings. We observe that lgn) = Cjny1.
The kth depth D,,11(k) in a trie built over n+ 1 strings
is the length of the path from the root of the trie to
the leaf containing the kth string. Note D, 1(n+1) =

max Cj,41 + 1. Therefore L, = Dpii(n +1) — 1.
1<j<n

Thus, in the context of tries, M,, = #{j | 1 < j <
N, Cjnt1 +1 = Dpyi(n+1)}. That is, M, is the size
of a subtree starting at the branching point of a new
insertion.

Define the exponential generating functions

Glu) =Y E[uMn]Z—?

n>0

W) = 3 Bl(M.)] %

n!
n>0

for complex u € C and j € N. If f : C — C, then the
recurrence relation

E[f(My)] = p™(af (n)+pE[f (Mn)])+¢" (pf (n)+4¢E[f (Mn)])

n—1

n _
+ 3 (1)t @B )]+ gL (0, 0)
k=1
(2.1)
holds for all n € N. If f(0) = 0, then the recurrence
also holds when n = 0. To verify (2.1), just consider the

possible values of Xl(j ) for 1 < j <n+1. Two useful
facts follow immediately from this recurrence relation.
First, if n € N, then

E[u™"] =p" quu" + pE[u™]) + ¢"(pu™ + ¢Eu"))
3 () et 0B + g,
k=1

(2.2)



Also, if j € N and n > 0 then

E[(Mn)Y] = "(qnl +pE[(M n)4))

(2.31+ Z ( ) Fq"H(pE[(My)2] + ¢E[(Mp—1)2]).

w2 + " (pnd + qE[(M.

We derive an asymptotic solution for these recurrence
relations using poissonization, the Mellin transform,
and depoissonization; details are given in the next sec-
tion. These methods yield the following two theorems.

2krﬂ'z Inp _r

THEOREM 2.1. Let z Vk € Z, where g — 5

for some relatively prime r,s € Z (recall that we are
interested in the situation where ln” is rational). Then

q(p/q9)? + p(q/p)?
h

E[(M. L'(j)

1 d?
- (d 25 (logl/p ))

where 0;(t) =

Z_

k=0

+8;(logy /1)
+0(n™?)

zZ=n

kT (2 + j) (p] —aitl 4 gip
p~#+tlInp+ g =tling

Z)cfj+1)

and T is the Euler gamma function.

Note that the term —in (%zij(logl/p z))‘zzn is
O(n~'). Note that §; is a periodic function that has
small magnitude and exhibits fluctuation. For instance,
when p = 1/2 then |§;(t)| < ﬁZk;ﬁo |F (j — 2"““T)|.

) In2
oz | are

The approximate values of 153", o |T (j —
given below for the first ten values of j.

2kim

ﬁ Zk;ﬁo |F (J ~ T2
1.4260 x 10~°
1.3005 x 10—
1.2072 x 103
1.1527 x 102
1.1421 x 10!
1.1823 x 10°
1.2853 x 10!
1.4721 x 102
1.7798 x 10°
2.2737 x 104
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We note that, if Inp/Ingq is irrational, then d;(z) — 0
as ¢ — o0o. So d; does not exhibit fluctuation when
Inp/Ingq is irrational.

The next result describes the asymptotic distribu-
tion of M,,.

Inp _ r

Ing s

THEOREM 2.2. Let z 2’"’” Vk € Z, where

for some relatively prime r, s G Z. Then E[uM»] =
In(1 - In(1 -
EuM] = _gin( pu)—}:p n(-qu) + 6(logy /1, u)
1 0? 5
(2.4) — e ~-50(log; /, 2, u) +0(n™%)
where .
o(t,u) = Z — 2k (4,

k0

(¢(1 = pu)=* + p(1 — qu) 7 — p~=+! — g=5H1)
p#*Hlinp+g =+ling '

X

and T is the FEuler gamma function. It follows immedi-
ately that

J
EluM] = Zp’q+qp j
Jj=1 _
N iz_eﬂcrwzlogup nF(Zk)(qu+qu)(zk)j uj
=1 k20 ji(p==+1Inp + ¢g=*++11ngq)
+ O™
(2.5)
and
. Pa+d'p
P(M, = = ——
. _e2k7‘7rzlog1/p nr(zk)(qu + q]p)(zk)i
2T T Inp g T Ing)
+ O™
(2.6)

Note that ¢ is a periodic function that has small
magnitude and exhibits fluctuation. For instance, when
p = 1/2 then |0(¢t,u)| < %Zk;ﬂ) |IT(—2kim/1In2)| =~
3.1463 x 1075, The non-fluctuating part of the dis-
tribution of P(M,, = j) follows the logarithmic series
distribution, as already mentioned above.

If Inp/Ingq is irrational and w is fixed, then we
observe 6(z,u) — 0 as £ — 0o. Thus § does not exhibit
fluctuation when Inp/In g is irrational.

Remark: We emphasize that the same method-
ology can be used to obtain even more terms in the
asymptotic formulae given in the two theorems.

3 Analysis and Proofs.

Now we present our analytical approach for proving
Theorems 1 and 2. Our first strategy is to poissonize the
problem. Then we utilize the Mellin transform and com-
plex analysis; thus we obtain asymptotic descriptions of
the distribution and factorial moments of M,,, but we



emphasize that these results are valid for the poissonized
model of the problem. We must depoissonize our results
in order to find the asymptotic distribution and factorial
moments of M, in the original model.

3.1 Poissonization. We first utilize analytical pois-
sonization. The idea is to replace the fixed-size pop-
ulation model (i.e., the model in which the number of
initial participants n in the selection process is fixed)
by a poissonized model in which the number of initial
participants is a Poisson random variable with mean
n. This is affectionately referred to as “poissonizing”
the problem. So we let the number of initial partic-
ipants in the selection process be N, a random vari-
able that has Poisson distribution and mean n (i.e.,
P(N = j) = e ™/ /j! Vj > 0). We apply the Pois-
son transform to the exponential generating functions
G(z,u) and W;(z), which yields:

= Z E[u™"]

n>0

and

=Y Bl e

n>0

By using (2.2) to expand the coefficients of 2™ in
G(z,u) for n > 1, we observe G(z,u) =

qeP*? 4+ pet®? —pe?® — qeP* + pG(pz, u)e?” + ¢G(gz, u)eP*.
(3.7)

Similarly, we apply (2.3) to the coefficients of 2" in
W;(z) for n > 1 to see that W;(z) =

q(pz)7e?* + p(qz)’e?* + pW;(pz)e? + qW;(qz)eP”
(3.8)

for all j e N. B

We observe that G(z,u) = G(z,u)e™*. If we
multiply by e~# throughout (3.7) and then simplify, we
obtain

— qe(pu—l)z +pe(qu—1)z _pe—pz _ qe—qz

G(z,u) . "~
9 + pG(pz,u) + qG(gz,u).

(3.9)

Similarly, from (3.8) we know that if j € N then

E/Vj (z)) = gq(pz)e” ¥ +p(gz)’e 7% + pW;(pz) + ¢W;(g2).
3.10

Note that the functional equations (3.9) and (3.10)
for the poissonized versions of G(z,u) and W;(z) are
simpler than the corresponding equations (3.7) and (3.8)
from the original (Bernoulli) model. We solve (3.9) and
(3.10) asymptotically for large z € R.

3.2 Mellin Transform. If f is a complex-valued
function which is continuous on (0,00) and is locally
integrable, then the Mellin transform of f is defined as

/f Yo't dx

(see [5] and page 400 of [17]). Three basic properties of
the Mellin transform are useful in proving the next two
results. We observe that

M([f(z); s

Mz f(x);s] = /00 ol f(x)z® ! dx

OOO
/ flx)z* i1 de
7G5+ )
M([f(z); s + j].

If 1+ > 0 we also notice

MIf(ua)is] = / f(uz)z* da
- /f )z* ! d
- ‘Sf = m M(f (2);3].
Also

Mle™%;s] = / e Tz7%dx = I['(s).
0

We first find the fundamental strip of G(z,v). By (3.9),
we observe that

G(J}, u) — qe(pufl)w + pe(qufl)w

—pe PT — g 1®

+ pG(pz, u) + qé(qm u)

_ Z((pu—l L Z qu—l

k>0 k>0
(—gx)*
- ‘12 k!
£>0 £>0
n k
“ —pxr
w3 Pl B S
n>0 k>0 ’
(g2)" \—~ (—g2)*
+4q Z E[u™ 1 Z 1
n>0 n k>0 kl
= q+qlpu—1)z+p+plgu— 1z
—-p+pr—q+q’z
+p+p2um—p2m+q+q2um—q2:c
asx — 0
= (u-1)z+1

We notice that G(z,u) — 1 as z — 0, but we want to
instead have G(z,u) = O(z) as  — 0. So we replace
G(z,u) by writing G(z,u) = G(z,u) — 1. We expect
G(z,u) = O(1) = O(z°) as £ — oo. Therefore the
fundamental strip of G(z,u) includes (—1,0).



We next determine the fundamental strip of W]‘ ().
By (3.10), we know

Wi(z) = q(pz)’e ™" + p(ga) e
+pW;(pr) + aw; (qz)
= gy Y T gy 0 )

k

k>0 k>0
n _ k
+p Y Bl By P
n>0 k>0 ’
n _ k
+a Y Bl 5 ()
n>0 ' k>0
= q(pz)’ + p(gz)’ ; ;
+pE[O) I 4 gary L)
asx — 0
since E[(M, D =0V0o<n<j
= 0(a’)

We expect W;(z) = O(1) = O(z°) as £ — o0. So
(—3,0) is the fundamental strip of Wj (z).

If w € R with u < min{1/p,1/q} and if Re(s) €
(=1,0) then it follows from (3.9) and the properties of
the Mellin transform given above that @*(s,u) =

T'(s) (1 —pu) * -

1—-p-
If j € N and Re(s) € (—4,0), then by (3.10) and the
properties of the Mellin transform we mentioned, we

see that

+p(1 —qu)—* —p =t

s+1 _ q—s+1

—s—j+1 +qufs ]+1)
—s+1 —-q s+1

T(s+j) (P'q
1—p

W;(s) =

We note that the Mellin transform is a special case
of the Fourier transform. So there is an inverse Mellin
transform. Since W; is continuous on (0, 00), then

. 1 c+100 —~ s
W,(m)=2—m/ W (s)z™%ds

if ¢ € (—a,—p), where (—a,—f) is the fundamental
strip of W;. Thus

— 1 —gtioco — s
Wi(z) = 9 Wi(s)z™*ds

—%—ioo
since ¢ = —1/2 is in the fundamental strip of Wj (x)
VjeN
Similarly

~ 1 —gtico
G(z,u) = / G*(s,u)r™%ds

2mi —loico

since ¢ = —1/2 is in the fundamental strip of @(w,u).

3.3 Results for the Poisson Model. We are re-
stricting attention to the case where Inp/Ingq is ratio-
nal. Thus we can write Inp/lng = r/t for some rela-
tively prime r, ¢t € Z. Then, by a theorem of Jacquet and
Schachinger (see page 356 of [17]), we know that the set

of poles of Wj*(s)a:_s is exactly {zk = 2{cnr;m | k€ Z}.
We also observe that Wj* (s)z~* has simple poles at each

2. Now we assume that u # 1. Then G*(s,u)z~* has

the same set of poles as W} (s)z~?, each of which is a
simple pole.
Let Ty denote the line segment from —% — iA to

—% + A in the complex plane, where A is a large real
number. Let T denote the line segment from —% +iA
to M +iA. Let T3 denote the line segment from M +4¢A4
to M —iA. Let Ty denote the line segment from M —iA
to —1 —iA. Now we claim that, if j € Nand z, = %;”',
then

Wi(z) = Z —Res[W} (s)z™%; 2] + O(z=M).
keZ
(3.11)

Using the Cauchy residue theorem [1], integrating clock-
wise around the curve described by T1,75,7T3,Ty, we
have

1
1 —gtico __
W*

J
27 ~1oico

i —~
= lim —/ Wi(s)z™*%ds
A—oco 271 Ty

= Jim (Z —Res[IW; (s = a/]

AV /T) w2

Sin

Wi(x) = — (s)z™%ds

where the sum is taken over all poles a; of W} (s)z~
the region bounded by 71,75, T3, Ty.

By the smallness property of the Mellin transform
(see page 402 of [17]), we observe that

g () o

We also observe (see page 408 of [17]) that

—*ds = O(A™Y).

1

21 Ts

1 M —ic0 o

M+1ico

Wi(s)z *ds

- Ti7* . —M—it
2_71'2/00 Wj (M +it)z " ds

< |m_M/27r|/_ W7 + it)| ds



= O@=~M).

Combining these results proves the claim made in (3.11).
The same reasoning shows that

@(a:,u) = Z —Res[@* (s,u)z % zx] + O(z™).
1)

We make the observation that

exp In $2kr7ri/ In(1/p)

= exp (In2*"™™ /1n (1/p))
— erMrz' logy/p T

Tk = x—2kr7rz/1np _

Using this observation, we claim that if j € N then

q(p/q9)’ + p(a/p)’
h

Wj(z) = T(j)
(3.13)
where h = —plnp — ¢qlnq denotes entropy and where

9j(t) =

+0;(logy /,, ) +0(z~ M)

eZkrm'tI'*(zk +J) (qu—Zk—j-‘rl + qu—zk—j+1)
p—Zk-‘rl lnp + q—zk+1 In q :

k0

To prove the claim, we first observe that, if k € Z, then

Res[W (s)2™°; z]
= 7 *Res[W;(s); 2]
e2kr7ri10g1/pzr(zk +])
(gt 4 gfpm It

X
p #*tlinp+q #tling

Now the claim made in (3.13) follows immediately from
(3.11).
Now we claim that

~ In(1 - In(1-
Gau) = -4 n pu)zp n (1 —qu)
(3.14) —1+6(log, /, z,u) + O(z™™)
where h = —plnp — ¢ln g denotes entropy and where
o(t,u) =
Z _errm'tF(zk)
k0

(g(1 —pu)™* +p(1 — qu)~* —p~*+! — g~ =+1)
p#Hlnp+g =+ling '

The proof is similar to the proof of (3.13). If k # 0 then

X

Res[é*(s,u)x’s/;\ 2]
=z **Res[G"(s,u); 2]
e2kT7ri logy/p @

9 (k)
p~#*lInp+g-*tling

x (q(1 — pu)™™ + p(1 — qu)™**
_p—zk—l—l _ q—zk—i-l)

Now we compute Res[G* (s, u)z*; z]. We first observe
that

L(s) (q(1 —pu)° + p(1 — qu) ™% —p~**' — ¢=*1)

= (5" +0(1)(—¢qIn(1 - pu)s —pln (1 — qu)s
+pln(p)s + gln (g)s + O(s?))

—gIn(1—pu) —pln(1 — qu)

+plnp+qlng+ O(s).

It follows that

z % Res[G* (s, u); 20]
gln(1—pu) +pln (1 —qu)

Res[G*(s,u)z%; 2] =

+ 1.

Combining these results, the claim given in (3.14) now
follows from (3.12).
As an immediate corollary of (3.14), we see that

G(z,u) = _qIn(1—pu) +pln (1 — qu)

h
+ 6(logy/p T, u) + O(xz—M).

We note that, if In p/ In g is irrational and w is fixed,
then §;(z) — 0 and d(x,u) = 0 as £ — oo. Thus §; and
d do not exhibit fluctuation when Inp/In g is irrational.

3.4 Depoissonization. Recall that, in the original
problem statement, n is a large, fixed integer. Most
of our analysis has utilized a model where n is a Pois-
son random variable. Therefore, to obtain results about
the problem we originally stated, it is necessary to de-
poissonize our results. We utilize the depoissonization
techniques discussed in [10] and Chapter 10 of [17], espe-
cially the Depoissonization Lemma, to prove Theorems
1 and 2.

For the reader convenience we recall here some de-
poissonization results of [10]. Recall that a measur-
able function :(0,00) — (0,00) is slowly varying if
P(tz)/(z) = 1 as © — oo for every fixed t > 0.

THEOREM 3.1. Assume that G(z) = Y gn%e_z is
a Poisson transform of a sequence g, which is an entire
function of a complex variable z. Suppose that there
exist real constants a < 1, B, 8 € (0,7/2), ¢1, ca,
and zg, and a slowly varying function i such that the
following conditions hold, where Sy is the cone Sy =

{z: |arg(2)| < 0}:
(I) For all z € Sy with |z| > 2o,

(3.15) 1G(2)] < ez (21);



(O) For all z ¢ Sy with |z| > 2o,

(3.16) 1G(2)e?| < epe®l?l.

Then forn > 1,

(3.17) =G(n)+0 (ny(n)) .

More precisely,

(3.18) gn = G(n) — tnG"(n) + O ("~ %)(n)) .

The “Big-Oh” terms in (3.17) and (3.18) are uniform
for any family of entire functions G that satisfy the

conditions with the same a, B, 0, c1, ¢c2, 2o and 1.

Now, we are in a position to depoissonize our

results. By (3.13), it follows that

r) q(p/q)’ :L-p(q/p)j

+6j(log, 1, 2) + O(zM)‘

q(p/9)? + p(q/p)’
h
+0(|z|~M)
= 0(1)

Wi(z)| =

IN

T(j)2

since |d;| is uniformly bounded on C.
By (3.14), we see that

3 gln (1 —pu) +pln (1 — qu)
h

+ 0(logy s, 2,u) + O(z_M)‘

G(z,u)| =

_gIn(1—pu)+pln(l —qu)
h
+ |8010g1, 2,u)| + O(12| )
= 0(1)

IN

when w is fixed since |§| is uniformly bounded on C.
We define ¢(z) = 1 Vz and note ¢ is a slow-
o) — (0,00) and
P(tz)/¢Y(z) = 1 as x — oo for every fixed ¢ > 0). Also
there exist real-valued constants car, cjm, 2m, 2jm

ing varying function (i.e., ¢ : (0,

such that .
Wi (2)| < ¢m2°0(2])
Vz € Sﬂ—/4 = {Z :
|G(z,u)| < enr|z[%0(|2])

Vz € Spin = {2

‘ ‘6 (logy/, 2 )‘

larg(z)| < w/4} with |z| > z; m, and

larg(z)| < w/4} with |z| > 2.
So condition (I) of Theorem 3.1 is satisfied. It follows
immediately by Theorem 10.4 of [17] that condition (O)

of [17] (see page 456) is also satisfied. So by Theorem 3.1
it follows that Theorems 1 and 2 hold, as claimed.

following. From (2.4), we have E[u

(3.19) E[uM"]

To see that (2.5) follows from (2.4), consider the

Mn] =

_gIn(1—pu)+pln(1—qu)
h
= d(logy/pn,u) +O(n).

Observe

_gln(1—pu)+pln(1—qu)

- i( q+q’) ol

Jj=1

Also note that

é(logy s myu)

= ) -

e2kr7rz' log,,, nF(zk)

p~#tlnp+q=*+Ing
X (q(1 —pu) * 4+ p(1 — qu)~**

p*2k+1 quk+1)
I

2kr7r21081/p"F(zk)(p]q+q] )( )J J
u’.
+1 +
=1 k=0 ~#+lnp+g**tling)

k0

Then we apply these observations to (3.19) to conclude

that (2

.5) holds.
Finally, we note that (2.6) is an immediate corollary

of (2.5).
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